On the optimally defined Hardy operator in -spaces
Author:
Werner J. Ricker
Journal:
Proc. Amer. Math. Soc. 146 (2018), 4693-4705
MSC (2010):
Primary 46E30, 47A67; Secondary 46G10, 47B38
DOI:
https://doi.org/10.1090/proc/14005
Published electronically:
August 10, 2018
MathSciNet review:
3856138
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: For each , the optimal extension of the classical Hardy operator from
into itself has been identified by Delgado and Soria. By relaxing the target space to be
we determine the optimal Hardy operator which maps into this target space.
- [1] Angela A. Albanese, José Bonet, and Werner J. Ricker, On the continuous Cesàro operator in certain function spaces, Positivity 19 (2015), no. 3, 659–679. MR 3386133, https://doi.org/10.1007/s11117-014-0321-5
- [2] Sergei V. Astashkin and Lech Maligranda, Cesàro function spaces fail the fixed point property, Proc. Amer. Math. Soc. 136 (2008), no. 12, 4289–4294. MR 2431042, https://doi.org/10.1090/S0002-9939-08-09599-3
- [3] Sergei V. Astashkin and Lech Maligranda, Structure of Cesàro function spaces, Indag. Math. (N.S.) 20 (2009), no. 3, 329–379. MR 2639977, https://doi.org/10.1016/S0019-3577(10)00002-9
- [4] Sergey V. Astashkin and Lech Maligranda, Structure of Cesàro function spaces: a survey, Function spaces X, Banach Center Publ., vol. 102, Polish Acad. Sci. Inst. Math., Warsaw, 2014, pp. 13–40. MR 3330604, https://doi.org/10.4064/bc102-0-1
- [5] B. Blaimer, Optimal Domain and Integral Extension of Operators Acting in Fréchet Function Spaces, Ph.D. thesis, Katholische Universität Eichstätt-Ingolstadt, Logos Verlag, Berlin, 2017. Also available at https://zenodo.org/record/1087454.
- [6] Colin Bennett and Robert Sharpley, Interpolation of operators, Pure and Applied Mathematics, vol. 129, Academic Press, Inc., Boston, MA, 1988. MR 928802
- [7] D. W. Boyd, The spectrum of the Cesàro operator, Acta Sci. Math. (Szeged) 29 (1968), 31–34. MR 239441
- [8] Arlen Brown, P. R. Halmos, and A. L. Shields, Cesàro operators, Acta Sci. Math. (Szeged) 26 (1965), 125–137. MR 187085
- [9] Guillermo P. Curbera and Werner J. Ricker, Optimal domains for kernel operators via interpolation, Math. Nachr. 244 (2002), 47–63. MR 1928916, https://doi.org/10.1002/1522-2616(200210)244:1<47::AID-MANA47>3.0.CO;2-B
- [10] R. del Campo and W. J. Ricker, The space of scalarly integrable functions for a Fréchet-space-valued measure, J. Math. Anal. Appl. 354 (2009), no. 2, 641–647. MR 2515245, https://doi.org/10.1016/j.jmaa.2009.01.036
- [11] R. del Campo and W. J. Ricker, Two Fatou completion of a Fréchet function space and applications, J. Aust. Math. Soc. 88 (2010), no. 1, 49–60. MR 2770926, https://doi.org/10.1017/S1446788709000238
- [12] Olvido Delgado, 𝐿¹-spaces of vector measures defined on 𝛿-rings, Arch. Math. (Basel) 84 (2005), no. 5, 432–443. MR 2139546, https://doi.org/10.1007/s00013-005-1128-1
- [13] Olvido Delgado, Optimal domains for kernel operators on [0,∞)×[0,∞), Studia Math. 174 (2006), no. 2, 131–145. MR 2238458, https://doi.org/10.4064/sm174-2-2
- [14] Olvido Delgado and Javier Soria, Optimal domain for the Hardy operator, J. Funct. Anal. 244 (2007), no. 1, 119–133. MR 2294478, https://doi.org/10.1016/j.jfa.2006.12.011
- [15] J. Diestel and J. J. Uhl Jr., Vector measures, American Mathematical Society, Providence, R.I., 1977. With a foreword by B. J. Pettis; Mathematical Surveys, No. 15. MR 0453964
- [16] Javier Duoandikoetxea, Fourier analysis, Graduate Studies in Mathematics, vol. 29, American Mathematical Society, Providence, RI, 2001. Translated and revised from the 1995 Spanish original by David Cruz-Uribe. MR 1800316
- [17] G. H. Hardy, J. E. Littlewood, and G. Pólya, Inequalities, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1988. Reprint of the 1952 edition. MR 944909
- [18] A. Fernández, F. Naranjo, and W. J. Ricker, Completeness of 𝐿¹-spaces for measures with values in complex vector spaces, J. Math. Anal. Appl. 223 (1998), no. 1, 76–87. MR 1627360, https://doi.org/10.1006/jmaa.1998.5956
- [19] Anna Kamińska and Damian Kubiak, On the dual of Cesàro function space, Nonlinear Anal. 75 (2012), no. 5, 2760–2773. MR 2878472, https://doi.org/10.1016/j.na.2011.11.019
- [20] Igor Kluvánek and Greg Knowles, Vector measures and control systems, North-Holland Publishing Co., Amsterdam-Oxford; American Elsevier Publishing Co., Inc., New York, 1976. North-Holland Mathematics Studies, Vol. 20; Notas de Matemática, No. 58. [Notes on Mathematics, No. 58]. MR 0499068
- [21] Gerald M. Leibowitz, Spectra of finite range Cesàro operators, Acta Sci. Math. (Szeged) 35 (1973), 27–29. MR 338822
- [22] Karol Leśnik and Lech Maligranda, Abstract Cesàro spaces. Duality, J. Math. Anal. Appl. 424 (2015), no. 2, 932–951. MR 3292709, https://doi.org/10.1016/j.jmaa.2014.11.023
- [23] Karol Leśnik and Lech Maligranda, Abstract Cesàro spaces. Optimal range, Integral Equations Operator Theory 81 (2015), no. 2, 227–235. MR 3299837, https://doi.org/10.1007/s00020-014-2203-4
- [24] D. R. Lewis, Integration with respect to vector measures, Pacific J. Math. 33 (1970), 157–165. MR 259064
- [25] D. R. Lewis, On integrability and summability in vector spaces, Illinois J. Math. 16 (1972), 294–307. MR 0291409
- [26] P. R. Masani and H. Niemi, The integration theory of Banach space valued measures and the Tonelli-Fubini theorems. I. Scalar-valued measures on 𝛿-rings, Adv. in Math. 73 (1989), no. 2, 204–241. MR 987275, https://doi.org/10.1016/0001-8708(89)90069-8
- [27] P. R. Masani and H. Niemi, The integration theory of Banach space valued measures and the Tonelli-Fubini theorems. II. Pettis integration, Adv. Math. 75 (1989), no. 2, 121–167. MR 1002206, https://doi.org/10.1016/0001-8708(89)90035-2
- [28] Reinhold Meise and Dietmar Vogt, Introduction to functional analysis, Oxford Graduate Texts in Mathematics, vol. 2, The Clarendon Press, Oxford University Press, New York, 1997. Translated from the German by M. S. Ramanujan and revised by the authors. MR 1483073
- [29] G. Mockenhaupt, S. Okada, and W. J. Ricker, Optimal extension of Fourier multiplier operators in 𝐿^{𝑝}(𝐺), Integral Equations Operator Theory 68 (2010), no. 4, 573–599. MR 2745480, https://doi.org/10.1007/s00020-010-1829-0
- [30] Susumu Okada, Werner J. Ricker, and Enrique A. Sánchez Pérez, Optimal domain and integral extension of operators, Operator Theory: Advances and Applications, vol. 180, Birkhäuser Verlag, Basel, 2008. Acting in function spaces. MR 2418751
Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 46E30, 47A67, 46G10, 47B38
Retrieve articles in all journals with MSC (2010): 46E30, 47A67, 46G10, 47B38
Additional Information
Werner J. Ricker
Affiliation:
Math.-Geogr. Fakultät, Katholische Universität Eichstätt-Ingolstadt, D-85072 Eichstätt, Germany
Email:
werner.ricker@ku.de
DOI:
https://doi.org/10.1090/proc/14005
Keywords:
Hardy operator,
$L^p_{loc}$-space,
optimal domain,
vector measure,
integral representation.
Received by editor(s):
July 28, 2017
Received by editor(s) in revised form:
October 30, 2017
Published electronically:
August 10, 2018
Communicated by:
Thomas Schlumprecht
Article copyright:
© Copyright 2018
American Mathematical Society