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Abstract. Let E be a Σ1
1 equivalence relation on 2ω which does not have

perfectly many equivalence classes. For a ∈ 2ω, define La
E to be the set

{[x]E : (∃y)(y ∈ [x]E and ω
〈a,y〉
1 = ωa

1 )}. For a Turing cone of a’s, La
E is

countable. This is proved assuming Π1
2-determinacy.

1. Background

The descriptive set theory of equivalence relations has been an active field of
research for about 25 years. Gao [2] is a reference for that field. Our new theorem
in that field will be stated in §2 and proved in §3. In §1, we review some background
material.

Consider Σ1
1 equivalence relations on the space 2ω. A special case of this is

an equivalence relation E′ obtained from a Σ1
1 equivalence relation E and an E-

invariant Borel set B by defining xE′y iff [xEy or (x /∈ B and y /∈ B)]. An even
more special case is the orbit equivalence relation of a Polish G-space (that is, a
continuous action by a Polish group, G, on 2ω), restricted (as above) to a Borel set
of orbits. And a still more special case is the isomorphism relation for L-structures
with universe ω (L a fixed countable vocabulary), restricted to the models of an
Lω1,ω sentence.

For E an equivalence relation on 2ω and x ∈ 2ω, [x]E denotes the E-equivalence
class of x.

We say that an equivalence relation E on 2ω has perfectly many equivalence
classes if there is a nonempty perfect set P ⊂ 2ω such that no two members of
P are E-equivalent. If E has perfectly many classes, then it has continuum many
classes. For Σ1

1 equivalence relations, “perfectly many” is absolute (while “contin-
uum many” is not).

Theorem 1.1 (Burgess; see [2, 9.1.5]). Let E be a Σ1
1 equivalence relation on 2ω.

Exactly one of the following three cases holds:

(1) E has perfectly many equivalence classes.
(2) E has ℵ1 and not perfectly many equivalence classes.
(3) E has countably many equivalence classes.

Theorem 1.1 is called the Burgess Trichotomy.
The Topological Vaught Conjecture and the Vaught Conjecture for Lω1,ω (which

are open) state that in the previously mentioned special cases—orbit equivalence
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relations and isomorphism—case (2) of the Burgess Trichotomy does not occur. As
the following example shows, for arbitrary Σ1

1 equivalence relations, case (2) can
occur.

Example 1.2. Let xE∗y iff [(neither x nor y is an ordinal code) or (x and y encode
the same countable ordinal)].

The above example illustrates another difference between arbitrary Σ1
1 equiva-

lence relations and orbit equivalence relations: all orbits are Borel sets [2, 3.3.2],
while there is an E∗-equivalence class which is not Borel.

When a Σ1
1 equivalence relation is Borel, case (2) cannot occur, because of the

following theorem.

Theorem 1.3 (Silver; see [2, 5.3.5]). Let E be a Borel equivalence relation on 2ω.
Exactly one of the following two cases holds:

(1) E has perfectly many equivalence classes.
(2) E has countably many equivalence classes.

Theorem 1.3 is called the Silver Dichotomy.
We next take up some recursion theoretic matters. The space 2ω plays two roles:

it is the space on which the equivalence relation exists; and it is also the space of
oracles. We continue to use letters from the end of the alphabet when considering
the space of the equivalence relation, and we use letters from the beginning of the
alphabet to denote oracles.

In the last few years there have been a number of recursion theoretic results
involving counterexamples to Vaught’s Conjecture. A well-known example of this
trend is the theorem of Montalbán [6] that not having perfectly many isomorphism
types is equivalent to “hyperarithmetic is recursive” on a Turing cone. A recent
paper of Gregoriades [3] is a part of that trend. That paper is the motivation for
this paper, and it will be discussed in §2.

We shall have occasion to consider (lightface) Σ1
1 equivalence relations. Special

cases of this include the orbit equivalence relation of a recursive Polish G-space (as
defined in [3]) and isomorphism when the vocabulary is recursive.

2. Some theorems and questions

The background material in §1 concerns the three cases of the Burgess Tri-
chotomy applied to all the equivalence classes. We now change our point of view
and consider the three cases applied only to the equivalence classes that are “low”in
the sense that they have members which cannot compute large countable ordinals.

Definition 2.1. Let E be a Σ1
1 equivalence relation on 2ω, and let a ∈ 2ω. Define

La
E = {[x]E : (∃y)(y ∈ [x]E and ω

〈a,y〉
1 = ωa

1 )}.
In [3], Gregoriades proved Theorems 2.2 and 2.3, below, and asked Question 2.4,

below.

Theorem 2.2. For every recursive Polish G-space with orbit equivalence relation
E, the following are equivalent:

(1) E does not have perfectly many equivalence classes.
(2) For all a ∈ 2ω, La

E is countable.

Theorem 2.3. Let E be an arbitrary Σ1
1 equivalence relation on 2ω. If for all

a ∈ 2ω, La
E is countable, then E does not have perfectly many equivalence classes.
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Question 2.4. Is the following statement true? If E is an arbitrary Σ1
1 equivalence

relation on 2ω which does not have perfectly many equivalence classes, then for all
a ∈ 2ω, La

E is countable.

The (1) implies (2) direction of Theorem 2.2 is proved by establishing that E
restricted to La

E is a Borel equivalence relation, and then applying Theorem 1.3. In
general, the E-equivalence classes need not be Borel (see Example 1.2), so clearly
E restricted to La

E need not be a Borel equivalence relation.
This paper does not answer Question 2.4. It does, however, provide a positive

answer with “for all a” weakened to “for a Turing cone of a’s”.

Theorem 2.5. Assume Π1
2-determinacy. Let E be a Σ1

1 equivalence relation on
2ω which does not have perfectly many equivalence classes. There exists a b such
that for all a ≥T b, La

E is countable.

Theorem 2.5 will be proved in §3.

Corollary 2.6. Assume Π1
2-determinacy. Let E be a Σ1

1 equivalence relation on
2ω. The following are equivalent:

(1) E does not have perfectly many equivalence classes.
(2) There exists a b such that for all a ≥T b, La

E is countable.
(3) There exists a b such that for all a ≥T b, La

E does not have perfectly many
equivalence classes.

Proof. To prove (3) implies (1), suppose (1) is false. Let P ⊂ 2ω be a perfect set
with no two members E-equivalent. Let b ∈ 2ω be such that P is the set of branches
of a recursive-in-b pruned tree on 2. Let a ≥T b. Then for a comeager subset C of

P , for all y ∈ C, ω
〈a,y〉
1 = ωa

1 . �
So while a Σ1

1 equivalence relation E need not satisfy the Silver Dichotomy, for
a Turing cone of a’s, La

E does satisfy that dichotomy.
Corollary 2.6 yields a recursion theoretic characterization of counterexamples

to the Silver Dichotomy (that is, counterexamples to “Vaught’s Conjecture”) for
Σ1

1 equivalence relations, E: E is a counterexample iff E has uncountably many
equivalence classes, but for a Turing cone of a’s, La

E has only countably many.
Perhaps the most surprising thing in this paper is the use of an axiom as strong

as Π1
2-determinacy to prove a theorem about Σ1

1 sets. This leads to an obvious
question.

Question 2.7. Is Theorem 2.5 provable from an axiom which is weaker than Π1
2-

determinacy?

3. The proof

The rest of this paper consists of a proof of Theorem 2.5. The axiom Π1
2-

determinacy is always assumed.
Fix a Σ1

1 equivalence relation E on 2ω with uncountably many but not perfectly
many equivalence classes. We prove Theorem 2.5 for this E, via a sequence of
lemmas.

Lemma 3.1. There exists a prewellordering, �, of 2ω satisfying the following three
properties:

(a) � has length ω1.
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(b) The levels of � are precisely the E-equivalence classes.
(c) The relation {(x, y) : x � y} is Δ1

2.

Proof. This is a theorem of Burgess [1], proved under the assumption that sharps
exist. By Harrington [4], the existence of sharps follows from Π1

1-determinacy. �

Fix � satisfying Lemma 3.1. For x ∈ 2ω, let ||x|| denote the ordinal which is the
level of x in �.

Let WO be the set of codes for infinite countable ordinals. For w ∈ WO, |w| de-
notes the ordinal encoded by w, and ≤w denotes the wellordering of ω corresponding
to w.

Lemma 3.2. There exists a b ∈ 2ω satisfying the two conditions below:

(a) E is Σ1
1(b).

(b) For any w ∈ WO, for any ξ < |w|, there exists an x ∈ 2ω such that ||x|| = ξ
and x ≤T 〈b, w〉.

Proof. Consider the following game. Player I plays wI ∈ 2ω and Player II plays
wII ∈ 2ω and y ∈ 2ω, where y encodes an infinite sequence 〈yi〉 from 2ω in the usual
way. Player I must play wI ∈ WO; if not, he loses. Assuming wI ∈ WO, Player II
wins the round of the game iff:

[wII ∈ WO and |wII| ≥ |wI| and (∀i, j ∈ ω)(i ≤wII
j ↔ yi � yj)

and (∀i ∈ ω)(∀z ∈ 2ω)(if z � yi then (∃j ∈ ω)(||z|| = ||yj ||))].
This is a Solovay game: the Boundedness Theorem for WO implies that Player I
cannot have a winning strategy. By Lemma 3.1(c), the payoff set for Player II is
Π1

2, so the game is determined. Let σ be a winning strategy for Player II. Let b be
of large enough Turing degree that σ ≤T b and E is Σ1

1(b). �

Fix b satisfying Lemma 3.2. We prove that this b satisfies Theorem 2.5 for E.
Let L be the language with one binary relation symbol and consider the logic

action for L: S∞ � XL. (For details, see [2, 3.6].) For v ∈ XL, if v encodes a linear
ordering of ω, then ≤v denotes that linear ordering. Given an orbit O, we abuse
the language and say that C ⊂ O is a “comeager subset of O” when we mean that
for some (equivalently, for any) v ∈ O, {g ∈ S∞ : g · v ∈ C} is a comeager subset of
S∞.

An ordinal is b-admissible if it is ωc
1 for some c ≥T b. The order-type of the

rationals is denoted η.

Definition 3.3. Let S = {v ∈ XL: there exists a b-admissible ordinal α such that
v encodes a linear ordering of order-type α(1 + η)}.

Lemma 3.4. S is Σ1
1(b).

Proof. It is a well-known theorem, originally due to Harrison [5], that v ∈ S iff

(∃c ≥T b)(∃u ∈ XL)(u is in the orbit of v and u ≤T c and u

encodes a linear ordering of ω and no terminal segment of ≤u

is a wellordering and ≤u has no Δ1
1(c) descending sequences). �
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Definition 3.5.

(a) Let

T = {(v, x) ∈ XL × 2ω : v ∈ S and (for a comeager set of elements

v′ in the orbit of v)(∃x′ ∈ 2ω)(x′ ≤T 〈b, v′〉 and x′Ex)}.
(b) For all v ∈ S, Tv = {x : (v, x) ∈ T}.
(c) For all y ∈ 2ω, T y = {v : (v, y) ∈ T}.

Lemma 3.6.

(a) T is Σ1
1(b).

(b) For all v, v′ ∈ S, for all x, x′ ∈ 2ω, if v′ ∈ S∞ · v and xEx′ and (v, x) ∈ T ,
then (v′, x′) ∈ T .

(c) For all v ∈ S, Tv includes only countably many E-equivalence classes.
(d) For all y ∈ 2ω, there exists a v ∈ S such that y ∈ Tv.

Proof.
(a) The definition of T in Definition 3.5(a) establishes that T is Σ1

1(b), using
Lemmas 3.2(a) and 3.4, and the fact that the pointclass Σ1

1(b) is closed under
category quantifiers (essentially [2, 3.2.9]).

(b) Obvious.
(c) Let v ∈ S. Suppose [x]E ⊂ Tv. Then there is a basic neighborhood N of

S∞ and an i ∈ ω such that for a comeager-in-N set of g, the recursive-in-〈b, g · v〉
partial function with index i is a total function x′ from ω into 2 (that is, a point in
2ω) and xEx′. For any N and i there is at most one such E-equivalence class.

(d) Let y ∈ 2ω. By Lemma 3.2(b), for any w ∈ WO such that |w| > ||y||,
there exists an x such that x ≤T 〈b, w〉 and ||x|| = ||y||; by Lemma 3.1(b), xEy.
By Lemma 3.1(a), there is a countable b-admissible ordinal α > ||y||. If v is any
element of the orbit α(1 + η), then ≤v has an initial segment isomorphic to an
ordinal greater than ||y||. Hence y ∈ Tv. �

For α a b-admissible ordinal, let Tα = Tv for some (equivalently by Lemma
3.6(b), for all) v in the orbit α(1 + η).

To complete the proof of Theorem 2.5, let a ≥T b. We show that La
E is countable.

Let M = {[x]E : (∃α ≤ ωa
1 )(α is b−admissible and x ∈ Tα)}. By Lemma

3.6(c), M contains only countably many E-equivalence classes. Therefore, it will
suffice to show that La

E ⊂ M . To prove this, fix y ∈ 2ω with [y]E /∈ M ; we show

that ω
〈a,y〉
1 > ωa

1 .
Part (d) of Lemma 3.6 tells us that T y �= ∅ and part (a) of that lemma tells

us that T y is Σ1
1(a, y). So by the Gandy Basis Theorem [2, A.1.4], there exists a

v ∈ T y with ω
〈a,y,v〉
1 = ω

〈a,y〉
1 . By definition of T , v is in the orbit β(1 + η) for

some b-admissible ordinal β; and by definition of M , β > ωa
1 . So clearly the linear

ordering ≤v has a wellordered initial segment of order-type greater than ωa
1 . Thus

ω
〈a,y〉
1 = ω

〈a,y,v〉
1 ≥ ωv

1 > ωa
1 .
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