
PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 146, Number 11, November 2018, Pages 4735–4740
https://doi.org/10.1090/proc/14129

Article electronically published on July 23, 2018

C-CYCLICAL MONOTONICITY AS A SUFFICIENT CRITERION

FOR OPTIMALITY IN THE MULTIMARGINAL

MONGE–KANTOROVICH PROBLEM

CLAUS GRIESSLER

(Communicated by Zhen-Qing Chen)

Abstract. This paper establishes that a generalization of c-cyclical mono-
tonicity from the Monge–Kantorovich problem with two marginals gives rise
to a sufficient condition for optimality also in the multimarginal version of that
problem. To obtain the result, the cost function is assumed to be bounded
by a sum of integrable functions. The proof rests on ideas from martingale
transport.

1. Introduction and result

Let X1, . . . , Xd be Polish spaces, and let μ1, . . . , μd be probability measures on
their Borel-σ-fields. By M(μ1, . . . , μd) we denote the set of probability measures
on the space E = X1 × · · · ×Xd with marginal distributions μ1, . . . , μd. Writing pi
for the canonical projections E → Xi, a measure μ on E is in M(μ1, . . . , μd) if and
only if

pi(μ) = μi for i = 1, . . . , d.

These measures are called transports or transport plans. Given a measurable cost
function c : E → R, the cost of a transport μ is the integral

∫
c dμ. The multi-

marginal Monge–Kantorovich problem is to minimize the cost amongst transports,
i.e., to solve

(mmMK) minimize
μ∈M(μ1,...,μd)

∫
c dμ.

There is a huge literature for the case d = 2, the Monge–Kantorovich problem; see,
e.g., [Vil03], [Vil09], or [AG12] for an overview. The literature on the case d > 2 is
more recent and less voluminous. For an overview the reader is referred to [Pas15].

For d = 2, a characterization of optimal transport plans is given by the concept
of c-cyclical monotonicity (see [Vil09, Ch. 5]): under fairly weak assumptions on
the cost function, a transport is optimal if and only if it is c-cyclically monotone. A
transport is c-cyclically monotone if it is concentrated on a c-cyclically monotone set
Γ ⊆ X1×X2 = X×Y , i.e., a set Γ such that for any pairs (x1, y1), . . . , (xn, yn) ∈ Γ
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one has, with yn+1 = y1,

(1)

n∑
i=1

c(xi, yi) ≤
n∑

i=1

c(xi, yi+1).

Does such a characterization also hold for the case d > 2?
We start with a definition with a built-in minitheorem that is well known for

d = 2 and similarly easy to show for d > 2.1

Definition 1.1. A set Γ ⊆ E is c-cyclically monotone if it fulfills any of the two
following equivalent conditions:

(i) for any n and any points
(
x
(1)
1 , . . . , x

(1)
d

)
, . . . ,

(
x
(n)
1 , . . . , x

(n)
d

)
∈ Γ and per-

mutations σ2, . . . , σd : {1, . . . , n} → {1, . . . , n}, one has
n∑

i=1

c
(
x
(i)
1 , . . . , x

(i)
d

)
≤

n∑
i=1

c
(
x
(i)
1 , x

(σ2(i))
2 , . . . , x

(σd(i))
d

)
;

(ii) any finite measure α concentrated on finitely many points in Γ is a cost-
minimizing transport plan between its marginals; i.e., if α′ has the same
marginals as α, then ∫

c dα ≤
∫

c dα′.

A weaker notion of c-monotonicity allowing only comparisons of two points
in (i) was shown to be a necessary condition for optimality in [Pas12]; see also
[CDPDM15]. The necessity of c-cyclical monotonicity in the sense of (i) is included
in the results of [BG14,Zae15]. Cyclical monotonicity was also discussed in [KP14],
where cost functions that satisfy the twist condition on cyclically monotone or on
splitting sets are shown to have a unique Monge solution of (mmMK), but the ex-
act connection between splitting sets and cyclically monotone sets remains an open
question. It is answered here as a byproduct in Proposition 2.5.

The question of sufficiency of cyclical monotonicity of a transport plan for opti-
mality was open, although there was an early result in [KS94] for quadratic costs
in the case d = 3. The situation is hence somewhat similar to the two-marginals
case, where the sufficiency of c-cyclical monotonicity was open for some time and is
now known to require more regularity of the cost function; see [AP03,Pra08,ST09,
BGMS09,BC10,Bei15].

In order to prove the sufficiency of c-cyclical monotonicity for optimality, we
assume c to be continuous and bounded by a sum of integrable functions. This
means that there are functions fi ∈ L1(μi) such that

c(x1, . . . , xd) ≤ f1(x1) + · · ·+ fd(xd) for all x1, . . . , xd.

Essentially the same condition was employed by Kellerer in [Kel84] to show the
existence of dual maximizers. It will be used here to obain the desired integrability
properties of the c-splitting functions defined and constructed in the next section
as the crucial step to the following theorem.

1In order to show (ii) from (i) it is enough to deal with measures α and α′ that assume only
rational values. One multiplies both

∫
c dα and

∫
c dα′ with the integer τ which is defined as the

product of all the denominators appearing in the values of α and α′. It is then possible to write

τ
∫
c dα as a sum of the form

∑n
i=1 c(x

(i)
1 , . . . , x

(i)
d ), and because of the assumptions on α and α′

one can find permutations to write τ
∫
c dα′ as

∑n
i=1 c(x

(i)
1 , x

(σ2(i))
2 , . . . , x

(σd(i))
d ).
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Theorem 1.2. Let c be a continuous cost-function E → [0,∞) which is bounded
by a sum of integrable functions. Let μ be a c-cyclically monotone transport plan
in M(μ1, . . . , μd). Then μ is optimal.

2. Proof of Theorem 1.2

The proof of Theorem 1.2 takes the proof for the case d = 2 in [ST09] as a blue-
print: we show that c-cyclically monotone sets are c-splitting sets. Optimality then
follows easily from the assumptions on c. We exploit ideas found in [BJ16], where a
notion of finite optimality is introduced as a generalization of c-cyclical monotonic-
ity to the martingale-transport problem (with two marginals). The compactness
argument to show that c-cyclically monotone sets are c-splitting is an adapted ver-
sion of the argument in [BJ16] to show that finitely optimal sets are “c-good”.
It is perhaps worth mentioning that, although the arguments from [BJ16] can be
adapted to the multimarginal Monge–Kantorovich problem, it is an open question
whether this is also possible for the multimarginal martingale problem.

Definition 2.1. A set G ⊆ E is called c-splitting if there exist d functions ϕi :
Xi → [−∞,∞) such that

ϕ1(x1) + ϕ2(x2) + · · ·+ ϕd(xd) ≤ c(x1, x2, . . . , xd)

holds for all (x1, x2, . . . , xd) ∈ E, and

ϕ1(x1) + ϕ2(x2) + · · ·+ ϕd(xd) = c(x1, x2, . . . , xd)

holds for all (x1, . . . , xd) ∈ G. We call the functions (ϕ1, . . . , ϕd) a (G, c)-splitting
tuple.

The definition of splitting tuples comes without regularity assumptions on the
functions ϕi. If the functions in a (G, c)-splitting tuple are measurable, we call it
a measurable tuple. The next lemma shows that for continuous c measurability
comes at no cost.

Lemma 2.2. If G is a c-splitting set and c is continuous, then there is a measurable
(G, c)-splitting tuple.

Proof. There is a c-splitting tuple (ϕ1, . . . , ϕd) by assumption. Set

ϕ̃1(x
0
1) = inf

x2,...,xd

{
c(x0

1, x2, . . . , xd)− ϕ2(x2)− · · · − ϕd(xd)
}
.

If ϕ̃1, . . . , ϕ̃i are already defined, set

ϕ̃i+1(x
0
i+1) = inf

x1,...,xi,xi+2,...,xd

{
c(x1, . . . , xi, x

0
i+1, xi+2, . . . , xd)

− ϕ̃1(x1)− · · · − ϕ̃i(xi)

− ϕi+2(xi+2)− · · · − ϕd(xd)
}
.

The functions ϕ̃1, . . . , ϕ̃d are measurable (in fact, upper semicontinuous) and
constitute a (G, c)-splitting tuple. �

Lemma 2.3. If G is c-cyclically monotone and finite, then it is c-splitting.

Proof. Immediate application of the definition of c-cyclical monotonicity and LP
duality; cf. [BJ16]. �
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Lemma 2.4. Let c be continous, let G be a c-splitting set, and let x0 = (x0
1, . . . , x

0
d)

∈ G. Then there exists a measurable (G, c)-splitting tuple (ϕ1, . . . , ϕd), such that

ϕi(xi) ≤ c(x0
1, . . . , x

0
i−1, xi, x

0
i+1, . . . , x

0
d) for all xi ∈ Xi, i = 1, . . . , d.

Proof. By the assumptions there is a measurable (G, c)-splitting-tuple (ϕ̃1, . . . , ϕ̃d).
As x0 ∈ G, we have

d∑
i=1

ϕ̃i(x
0
i ) = c(x0).

Hence, the values ϕ̃i(x
0
i ) are all in R. Now define

ϕ1 : x1 �→ ϕ̃1(x1) + ϕ̃2(x
0
2) + · · ·+ ϕ̃d(x

0
d),

ϕi : xi �→ ϕ̃i(xi)− ϕ̃i(x
0
i ), for i = 2, . . . , d.

We have
∑d

i=1 ϕi(xi) =
∑d

i=1 ϕ̃i(xi), and hence (ϕ1, . . . , ϕd) is a (G, c)-splitting
tuple with ϕ1(x

0
1) = c(x0) ≥ 0 and ϕi(x

0
i ) = 0 for i = 2, . . . , d. We hence have

ϕ1(x1) ≤ c(x1, x
0
2, . . . , x

0
d) for all x1 ∈ X1,

ϕi(xi) ≤ c(x0
1, . . . , x

0
i−1, xi, x

0
i+1, . . . , x

0
d)− ϕ1(x

0
1)

≤ c(x0
1, . . . , x

0
i−1, xi, x

0
i+1, . . . , x

0
d) for all xi ∈ Xi. �

Proposition 2.5. Every c-cyclically monotone set Γ is c-splitting.

Proof. (The result is trivial if Γ is empty.)
We fix an element x0 ∈ Γ. Define the functions ci : Xi → [0,∞):

ci : xi �→ c(x0
1, . . . , x

0
i−1, xi, x

0
i+1, . . . , x

0
d).

For each finite subset G of Γ, set G′ = G ∪ {x0}. By the previous two lemmas,
for each such G′ there is a (G′, c)-splitting tuple with the components of the tuple
bounded from above by c1, . . . , cd, respectively. Now we define

GG =
{
ϕ ≡ (ϕ1, . . . , ϕd) : ϕ is a (G′, c)-splitting tuple with

ϕi(xi) ≤ ci(xi) for all xi ∈ Xi, i = 1, . . . , d
}
.

The sets GG′ are nonempty by our previous considerations. Note that they are
closed in the topology of pointwise convergence on the compact function space

R
X1 × · · · × R

Xd
. Also, the sets GG′ have the finite intersection property: this is

clear from

G(G1∪G2)′ ⊆ GG′
1
∩ GG′

2
.

Consequently, the set

G =
⋂

G⊆Γ, G finite

GG′

is nonempty. It is easy to check that each of the tuples in G is (Γ, c)-splitting. �

Proof of Theorem 1.2. μ is concentrated on a c-cyclically monotone, and hence a
c-splitting set Γ. By the assumption on c, for any x0 = (x0

1, . . . , x
0
d) in Γ the

functions
ci : xi �→ c(x0

1, . . . , x
0
i−1, xi, x

0
i+1, . . . , x

0
d)

are in L1(μi). By Lemma 2.4, there is a measurable (Γ, c)-splitting tuple (ϕ1, . . . , ϕd)
such that

ϕi(xi) ≤ ci(xi) for all xi ∈ Xi, i = 1, . . . , d.
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Hence, the functions ϕi are all integrable against μi, with the value of the integral
in [−∞,∞). Now take any μ′ ∈ M(μ1, . . . , μd). We have, as μ is concentrated on
the c-splitting set Γ, and (ϕ1, . . . , ϕd) is (Γ, c)-splitting,∫

c dμ =
∑∫

ϕi dμi ≤
∫

c dμ′. �
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