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EXAMPLES OF ITO CADLAG ROUGH PATHS

CHONG LIU AND DAVID J. PROMEL

(Communicated by Zhen-Qing Chen)

ABSTRACT. Based on a dyadic approximation of It6 integrals, we show the
existence of It6 cadlag rough paths above general semimartingales, suitable
Gaussian processes, and nonnegative typical price paths. Furthermore, the
Lyons—Victoir extension theorem for cadlag paths is presented, stating that
every cadlag path of finite p-variation can be lifted to a rough path.

1. INTRODUCTION

Very recently, the notion of cadlag rough paths was introduced by Friz and
Shekhar [FS17] (see also [CF17.[Chel7]) extending the well-known theory of con-
tinuous rough paths initiated by Lyons [Lyo98]. These new developments sig-
nificantly generalize an earlier work by Williams [Wil01]. While [Wil01] already
provides a pathwise meaning to stochastic differential equations driven by certain
Lévy processes, [ES17/CE17] develop a more complete picture about cadlag rough
paths, including rough path integration, differential equations driven by cadlag
rough paths, and the continuity of the corresponding solution maps. We refer to
[LCLO7[FVI10bLFH14] for detailed introductions to classical rough path theory.

A cadlag rough path is analogously defined to a continuous rough path using
finite p-variation as required regularity (see Definitions 2.J]and 2.3]), but (of course)
dropping the assumption of continuity. Note that the notion of p-variation still
works in the context of cadlag paths without any modifications. Loosely speaking,
for p € [2,3) a cadlag rough path is a pair (X, X) given by a cadlag path X : [0,7] —
R? of finite p-variation and its “iterated integral”

t
(1.1) Xot = “/ (X, — X,)®dX,”, s,tel0,T],

which satisfies Chen’s relation and is of finite p/2-variation in the rough path sense.
While the “iterated integral” can be easily defined for smooth paths X, as for
example via Young integration [You36], it is a nontrivial question whether any
paths of finite p-variation can be lifted (or enhanced) to a rough path. In the
setting of continuous rough paths this question was answered affirmative by the
Lyons—Victoir extension theorem [LV07]. In Section Pl we prove the analogous
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result in the context of cadlag rough paths stating that every cadlag path of finite
p-variation for arbitrary noninteger p > 1 can be lifted to a rough path.

The theory of cadlag rough paths provides a novel perspective to many questions
in stochastic analysis involving stochastic processes with jumps, which play a very
important role in probability theory. For a long list of successful applications of con-
tinuous rough path theory we refer to the book [FHI14]. However, for applications
of rough path theory in probability theory the Lyons—Victoir extension theorem
is not sufficient. Instead, it is of upmost importance to be able to lift stochastic
processes to random rough paths via some type of stochastic integration.

In Section B] we focus on stochastic processes with sample paths of finite p-
variation for p € (2,3), which is the most frequently used setting in probability
theory, and construct the corresponding random rough paths using It6(-type) inte-
gration. More precisely, we define for a stochastic process X the “iterated integral”
X (cf. () as a limit of approximating left-point Riemann sums, which corre-
sponds to classical It6 integration if X is a semimartingale. The main difficulty is
to show that X is of finite p/2-variation in the rough path sense. For this purpose
we provide a deterministic criterion to verify the p/2-variation of X based on a
dyadic approximation of the path and its iterated integral; see Theorem [ As
an application of Theorem [3.I] we provide the existence of Ito cadlag rough paths
above general semimartingales (possibly perturbed by paths of finite ¢-variation),
certain Gaussian processes, and typical nonnegative prices paths. Let us remark
that related constructions of random cadlag rough paths above stochastic processes
are given in [FS17] and [CEF17], on which we comment in more detail in the specific
subsections.

1.1. Organization of the paper. In Section ] the basic definitions and Lyons—
Victoir extension theorem are presented. Section Bl provides the constructions of
It6 cadlag rough paths.

2. CADLAG ROUGH PATH AND LYONS—VICTOIR EXTENSION THEOREM

In this section we briefly recall the definitions of cadlag rough path theory as
very recently introduced in [FS17[CEF17] and present the Lyons—Victoir extension
theorem in the cadlag setting; see Proposition [2.4]

Let D([0,T); E) be the space of cadlag (right-continuous with left-limits) paths
from [0,7] into a metric space (F,d). A partition P of the interval [0,7] is a set
of essentially disjoint intervals covering [0, 7], i.e., P = {[ti,tit1] : 0 =1to < t1 <
<o <t,=T,n€N}. Apath X € D([0,T]; E) is of finite p-variation for p € (0, c0)
if

P
1 X || povar == (sup Z d(XS,Xt)p> < 00,
[s,t]eP

where the supremum is taken over all partitions P of the interval [0, 7] and the sum
denotes the summation over all intervals [s,t] € P. The space of all cadlag paths
of finite p-variation is denoted by DP™¥*'([0,T]; E). For a two-parameter function
X: Ap — R34 we define

I

(2.1) O (sup 3 X|) . pe(0,00),

[s,t]eP
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where Ap := {(s,t) € [0,T] : s <t} and d € N. Furthermore, we use the shortcut
Xot =X, — X, for X € D([0, T]; R?).

For p € [2,3) the fundamental definition of a cadlag rough path was introduced
in [FS17, Definition 12] and reads as follows.

Definition 2.1. For p € [2,3), a pair X = (X, X) is called a cadlag rough path over

R9 (in symbols X € WP([0, T];R?)) if X: [0,7] — R? and X: Ar — R¥*4 satisfy:

1) Chen’s relation holds: X;; — X, — Xy = X5, Xy for0<s<u<t<T.

2) The map [0,T] >t — Xo; + Xo; € RY x R4 is cadlag.

3) X = (X,X) is of finite p-variation in the rough path sense, i.e., || X||p-var +
1X[|p/2-var < 0.

(
(
(

An important subclass of rough paths are the so-called weakly geometric rough
paths: For N > 1 let GV (RY) c TV (R?) := Z,iVZO(Rd)(@k be the step-N free nilpo-
tent Lie group over R?, embedded into the truncated tensor algebra (T (R?), +, ®)
which is equipped with the Carnot—Carathéodory norm || - || and the induced (left-
invariant) metric d. For more details we refer to [EV10b, Chapter 7]. A rough path
X = (X,X) € Wr([0,T];R?) for p € [2,3) is said to be a weakly geometric rough
path if 1 + Xo, + X, takes values in G?(R?).

Note that while the constructions of rough paths carried out in Section [ lead
in general to nongeometric rough paths, it is always possible to recover a weakly
geometric one.

Remark 2.2. If N = 2 and p € [2,3), one can easily verify that if X = (X, X)
is a cadlag rough path, then there exists a cadlag function F: [0,7] — RX9 of
finite p/2-variation such that 1+ X ; +Xo ; + F} is a weakly geometric rough path;
cf. [FHI4, Exercise 2.14].

The notion of weakly geometric rough paths naturally extends to arbitrary low
regularity p € [1,00); see [CF17, Definition 2.2].

Definition 2.3. Let 1 <p < N+1,and let N € N. Any X € DPv ([0, T]; GN (R?))
is called a weakly geometric cadlag rough path over R,

The next proposition is the Lyons—Victoir extension theorem (see, in particular,
[LV07), Corollary 19]) in the context of cadlag rough paths.

Proposition 2.4. Letp € [1,00)\{2,3,...}, and let N € N be such that p < N+1.
For every cadlag path X : [0,T] — R? of finite p-variation there exists a (in general
nonunique) weakly geometric cadlag rough path X € DP™Var([0,T); GN(RY)) such
that w1 (X) = X, where w1 : GN(RY) — RY is the canonical projection onto the first
component.

Proof. Let X be a cadlag R%valued path of finite p-variation. By a slight modifi-
cation of [CGI8, Theorem 3.1], there exists a nondecreasing function ¢: [0,T] —
[0, p(T)] with ¢(T) < co and a 1/p-Hélder continuous function g: [0, p(T)] — R?
such that X = go . Since ¢(t) is nondecreasing, the set A of discontinuity points
of ¢ is at most countable. Let us define a function ¢ such that ¢(t) = ¢(t) for
t e ([0,TT\N)U{T} and ¢(t) = @(t+) := limgy sepr @(s) if t € N. It is easy
to verify that ¢ is nondecreasing, cadlag, and ¢(T) = ¢(T). Moreover, since X is
right-continuous and ¢ is continuous, we have go ¢ = X.

By [LVO7, Corollary 19] there exists a weakly geometric 1/p-Hélder continuous
rough path § such that 7,(§) = g. Now we define X := §o ¢. Since ¢ is cadlag and
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§ is continuous, X is also cadlag. Furthermore, using [CGI8|, Theorem 3.1] again
we conclude that X has finite p-variation and thus X € DPver ([0, T]; GIP}(R%))
with [p] :== max{n € N : n < p}. Finally, it is obvious that m (X) = 71(§) o ¢
= go ¢ = X and the extension of X to a weakly geometric cadlag rough path
X € DP([0,T); GN(RY)) for every N € N with p < N + 1 is possible due to
[ES17, Theorem 20]. O

Further conventions: The space R? (resp., R9*?) is equipped with the Euclidean
norm |- |. For X € D([0,T];R?%) the supremum norm is given by [ X|s :=
supyepo,r] | X¢| and X_ denotes the left-continuous version of X, ie., X_(t) =
Xi— = limg ¢ 51 X for t € (0,7] and X_(0) := Xo_ := Xo. We write Ay < By,
meaning that Ay < C'By for some constant C' > 0 independent of a generic param-
eter ¥, and Ay Sy By, meaning that Ay < C(9)By for some constant C(¢) > 0
depending on 9. The indicator function of a set A C R or A C D([0,T];R?) is
denote by 14 and z Ay := min{z, y} for x,y € R.

3. CONSTRUCTION OF ITO ROUGH PATHS

In order to lift stochastic processes using It type integration, we first prove a
deterministic criterion to check the p/2-variation of the corresponding lift. The
construction of random rough paths above (stochastic) processes is presented in
the following subsections.

For X € D([0,T];R?) or for (later) any cadlag process X, we define the dyadic
(stopping) times (7])n ken by

0 =0 and 7, =inf{t > 7 | Xy - X | > 27"

Furthermore, for ¢t € [0, 7] and n € N we introduce the dyadic approximation

oo t oo
(31) th = ZXTQ]'(TI?:T;L+1](.&) and /O X;L®dXS = ZXTI? ®X-,—]?/\t77—11l+1/\t.
k=0 k=0

Note that the integral fot X! ® dX; is well defined and || X™ — X_||oo < 27" for
every n € N.

Theorem 3.1. Suppose that X € DPV*([0,T];R?) for every p > 2 and there exist
a function [; X_ ® dX € D([0,T);R**%) and a dense subset Dr containing T
in [0,T) satisfying that for every t € Dr and for every e € (0,1), there exist an
N = N(t,e) € N and a constant ¢ = ¢(p,€) such that

t t
(3.2) / X'@dX, — / X_® dX‘ <2779 for alln > N.
0 0

Setting for (s,t) € Ap
t t s

X, ¢ ;:/ X,_®dX, - X, ®X,, ::/ XT_®dXT—/ X,  ®dX, — X, ® X, .,
s 0 0

then (X,X) € WP([0, T); R?) for every p € (2,3).

To prove Theorem B} we adapted some arguments used in the proof of [PP16,
Theorem 4.12], in which the existence of rough paths above typical continuous
price paths is shown; cf. Subsection [3.3] As a preliminary step, we need a version
of Young’s maximal inequality (cf. [You36] or [LCLO7, Theorem 1.16]) specific to
the integral [ X" ® dX.
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Recall that a function ¢: Ay — [0, 00) is called right-continuous superadditive if
c(s,u) +c(u,t) <c(s,t) for 0<s<u<t<T,

and c(s, t) is right-continuous in ¢ for fixed s. Note that X € DPva([0, T]; R?) if and
only if there exists a right-continuous superadditive function ¢ s.t. | X, |P < ¢(s,t)
for all (s,t) € Ar.

Lemma 3.2. Let X € DP*([0,T];R?) for every p > 2. Then it holds that

i s
‘/ Xﬁ@dXT—/ X' @dX, — X, ® X,
0 0

< max{2 "e(s, )/, 270 De(s, 1) + (s, 1)),

for q € (2,3) and every superadditive function c: Ar — [0,00) (which may depend
on q) such that | X |7 < c(s,t) for all (s,t) € Ap.

The proof follows the classical arguments used to derive Young’s maximal in-
equality.

Proof. Let X € DPV ([0, T|; R%), and let X" be its dyadic approximation as defined
in BJ).

1. If there exists no k such that 7' € [s, ], then
t s
’ / X"®dX, — / X" @dX, - X, X,,| <27 (s, )9
0 0

due to the estimate | X ¢| < c(s, 1)/

2. If there exists a k such that 77" € [s,t], we may assume that s = 73 for some
ko. Otherwise, we just add c(s,)?/? to the right-hand side. Let Thos s Thot N—1
be those (77}), which are in [s,t). W.lo.g. we may further suppose that N > 2.
Abusing notation, we write 7' , ;- = ¢. The idea is now to successively delete
points (77: ,,) from 75 ,..., 7 . x_ ;. Due to the superadditivity of ¢, there exist
¢e{l,...,N — 1} such that

2
n n
AThyo—1> Thot+1) < c(s, ),
N -1
and thus
|X7'z:-,10+e—1 ® XT£6+£—17TI::LO+Z + XTI?UM ® XT£6+£’T£6+Z+1 B XTI?O-HZ—l ® XTI?b+e—1vT£¢+e+1

n n 2/q
- |X7'1?0+e71’7'1?b+z ® XT§6+177'£6+1+1| < C(Tko-i-@—l’ Tko+€+1)
2 2/q
< ( c(s,t ) .
S g=gels )

Successively deleting in this manner all the points except 7 = s and 70,y =t
from the partition generated by 7 ,...,75» | v leads to the estimate

t s
‘/ Xﬁ@er—/ X' @dX, — X, ® X,y
0 0

N
< Z ( 2 c(s t))2/q < ]\7172/110(S t)z/q
— k:2 k _ 1 3 ~ k)

S (#k:) e ls, t]})1_2/qc(s, t)2/q + c(s,t)2/q,

~
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since N < #{k: 1] € [s,t]}.
Hence, 1 and 2 in combination with #{k : 7' € [s,t]} < 2"%(s,t), imply the
assertion. 0

With the auxiliary Lemma at hand we come to the proof of Theorem B.11

Proof of Theorem Bl Tt is straightforward to check that (X,X) satisfies condi-
tions (1) and (2) of Definition 2.Iland that ||.X||p-var < co. Therefore, it remains to
show the p/2-variation (in the sense of (2.I])) of X for every p > 2.

Let ¢ be a right-continuous superadditive function with | X, |7 < c¢(s,t). Then
for all (s,t) € Ar N D%, using (32) and Lemma B2 for every € > 0 and ¢ € (2, 3)
we get a constant ¢ = ¢(p, ¢, &) such that

< 0(2_”(1_5) + max{2 "¢(s, t)/9, 272D (s, 1) + (s, t)2/q}),

t s
|Xs,t| < 0(2—71(1—8) + ’/ X!'®dX, — / X ®@dX, — X; ® X4
0 0

(3.3)

for all n > N, where N € N may depend on s,t, and €.
In the case that c(s,t) < 1, we set a := p/2 for p € (2, 3) and choose n > N such
that 27" < ¢(s, t)'/(@(1=€) Taking this n in ([B3)), we obtain

X5 < C(c(s, t)+max {c(s, )Y (A=) (s,4)*/9 (s, 1) 2D/ A=) te | C(S7t)2a/q}>
a(l—e) — a(l—e
= c(c(s, t)+max {c(s, t) RS ,e(s, t)%(;) + (s, t)%‘/q} )

for some constant ¢ = ¢(«,q,e). Now we would like all the exponents in the
maximum on the right-hand side to be larger than or equal to 1. For the first term,
this is satisfied as long as ¢ < 1. For the third term, we need a > ¢/2. For the
second term, we need « > (¢—1—¢)/(1 —¢). Since € > 0 can be chosen arbitrarily
close to 0, it suffices if @ > ¢ — 1. This means, choosing a gg > 2 close to 2 enough
such that p/2 = a > max{qo/2,qo — 1}, we obtain that |X,,|[?/? < ¢ c(s,t) for
some constant ¢ = ¢(p, qo)-
For the remaining case c(s,t) > 1, we simply estimate

p/2

‘Xs7t|p/2§c(H/Xr_®dXT +||X||§o)§c<H/XT_®dXT
0 o 0

p/2
HIXIE )l )
o0

Therefore, |X, (|?/? < ¢ - c(s,t) for some constant ¢ = ¢(p) and for every (s,t) €
Ar N DZ. Moreover, for an arbitrary (s,t) € Ar, picking any sequences (sk)ken
and (tg)ren in Dr such that s, | s and t; | t as kK — oo, we have

|XS,,5|7’/2 = lim |X5k’tk|p/2 < e(p) limsup (s, tx) < ¢(p) lim (s, t;) = c(p)e(s, t),
k—o0 k—00 k— o0

since c(s,t) is right-continuous and superadditive. This ensures that ||X||p.var <
00. g

Remark 3.3. All arguments in the proofs of Theorem [3.1] and of Lemma [3.2] extend
immediately from R? to (infinite-dimensional) Banach spaces. However, while the
theory of continuous rough paths works for Banach spaces (cf. [Lyo98|[LCLO7]),
the current results about cadlag rough paths are developed in finite-dimensional
settings (cf. [FSI7[CF17]). For this reason we also focus only on R¢-valued paths
and stochastic processes.
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3.1. Semimartingales. Let (2, F,P) be a probability space with filtration
(Ft)tefo,r) satisfying the usual conditions. For a R?valued semimartingale X we
consider

(3.4)
t t s

Xt ::/ (X, —X,)®dX, :/Xr_®er—/ X, @dX,—X,®Xs,, (s,t)€Arp,
s 0 0

where the integration [ X, ® dX is defined as an It6 integral. We refer to [Pro05]
and [JS03] for more details on stochastic integration.

Proposition 3.4. Let X be a R%-valued semimartingale. If X is defined as in (B3.4)
via Ité integration, then (X,X) € WP([0,T]; R?) for every p € (2,3) P-almost surely.

Proof. First note that every semimartingale possesses cadlag sample paths of finite
p-variation for any p > 2 (see, e.g., [Pro05, Chapter I1.1] and [Lép76]) and [ X, ®
dX has cadlag sample paths (see, e.g., [JS03, Theorem 1.4.31]). Therefore, in
order to deduce Proposition B.4] from Theorem [3.I] it suffices to verify that the
condition (3.2)) holds P-almost surely for [ X_ ® dX and its dyadic approximation
J X" ®@dX defined via (3.

1. Let us assume that X = M is a square integrable martingale and M™ its
approximation defined as in (3J). By the Burkholder-Davis—Gundy inequality we
observe

2
(3.5) C(M,n) :—]EH

/M”@dM—/ M_®dM
0 0

} <27 peN,

o0

where the constant depends on the quadratic variation of M. Combining Cheby-
shev’s inequality with (1)), we get

IP’(H / M"®dM — / M_® dMH > 2—"“—6)) < 2= (M, n) < 272,
0 0 [eS)
Since the right-hand side is summable in n, the Borel-Cantelli lemma gives
H/ M"®dM—/ M-_ ®dMH Swe 27079 Poas.
0 0 [eS)

2. Let X = M be alocally square integrable martingale. Let (0% )xen be a localiz-
ing sequence of stopping times for M such that oy < og41, limg_ oo Pl =T) = 1,
and for every k, the stopped process Mk is a square integrable martingale. Thanks
to 1 applied to every M7*, for every k there exists a 2 C Q with P(2;) = 1 such
that for all w € Q, it holds that

for any n. It follows immediately that ([8.2)) holds for any w € J,cn({ox = TINQ%)
and it holds that P(U,cy({ox = T3 N Q%)) = 1.

3. By [Pro05], Theorem I11.29], every semimartingale X can be decomposed as
X = Xo+ M+ A, where Xy € R?, M is a locally square integrable martingale, and
A has finite variation. By 2 we obtain that ||f0 X"@dM - [[X_® dMHOO Swe
2-(1=¢) P.as.; on the other hand, since | X" — X ||, < 27", we also have
|fo X" @dA— [ X_©dA||_ <o 27" O

Nop Nog
/ M"®dM — / M_® dMH Swp 27709
0 0 [e's)
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Remark 3.5[1 Very recently, Chevyrev and Friz proved that every semimartingale
can be lifted via the “Marcus lift” to a weakly geometric cadlag rough path based
on a new enhanced Burkholder-Davis—-Gundy inequality; see [CE17, Section 4].
Their result allows for deducing the existence of It6 rough paths due to [FS17,
Proposition 16]. However, let us emphasize that our approach directly provides the
existence of an Itd rough path only relying on classical It6 integration and fairly
elementary analysis (cf. Theorem [3.1]). Moreover, it is independent of the results
from [CF17[FS1T).

Two natural generalizations of semimartingales are semimartingales perturbed
by paths of finite g-variation for ¢ € [1,2) and Dirichlet processes. While these
stochastic processes are beyond the scope of classical It6 integration, one can still
construct corresponding random rough paths as a limit of approximating Riemann
sums.

For Y € D%V ([0, T]; R?) with ¢ € [1,2), the Young integral

/Yr,®dYT = lim Z Yo @ Yon in
0

n— 00
[s,t]ePm

exists along suitable sequences of the partition (P"),ecny and belongs to
Davar([0, T); R*4); see for instance [You36] or [FS17, Proposition 14]. In this
case the Young integral can also be obtained via the dyadic approximation (Y™) as
defined in (B1). Indeed, using the Young—Loeve inequality (see, e.g., [ES17, Theo-
rem 2]) and a standard interpolation argument, one gets

5 Hyn - Yf”q’-varHYHq’-var

H/ W@dn—/n,@dn
0 0 0o

SV = YL Y = YIS Y fgvar S [V [ 200/

g-var g-var

for 1 < ¢ < ¢ <2, and thus lim, . || [, ¥;" @ dY, — [[ Y;— ® dY; || = 0.

As a consequence of Proposition 3.4 and the previous discussion, it follows that
semimartingales perturbed by paths of finite g-variation admit a natural rough path
lift in the spirit of It6 integration. A similar result for the canonical Marcus lift
was presented in [CF17, Section 5.1].

Corollary 3.6. Let Z = X + Y be semimartingale perturbed by paths of finite
q-variation with g € [1,2), i.e., X is a semimartingale and Y is a stochastic process
with sample paths of finite q-variation for q € [1,2). Then, there exists a cadlag
rough path (Z,7) € WP([0,T]; R?) for every p € (2,3) P-almost surely, where Z can
be constructed as a limit of approximating left-point Riemann sums.

In the case Z = X +Y for a stochastic process Y with continuous sample paths
of finite ¢g-variation with ¢ € [1,2), the process Z belongs to the class of so-called
cadlag Dirichlet processes; cf. [Str88] and [CMS03]. Furthermore, let us remark
that if Y € C%2var([0, T]; R?) admits a rough path lift, then it has to coincide with
the Young integral; cf. [FHI4, Exercise 2.12]. Here C%2Va7([0,T];RY) denotes the
closure of smooth paths on [0,T] w.r.t. |- |2.var-

LAfter completion of the present work, it was pointed out in [FZ17] that the Ttd lift of semi-
martingales can also be constructed using an enhanced version of the Burkholder-Davis—Gundy
inequality.
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3.2. Gaussian processes. Let (2, F,P) be a probability space with filtration
(Fi)iefo, ) satisfying the usual conditions, and let X = (X*',...,X%): Qx [0,T] —
R? be a d-dimensional Gaussian process. A natural candidate for the corresponding
X = (X)), i1, 4 is

(3.6)

1 )
;Jt-:/ X! dXxi- /XZ dX/-XiXJ, and X;;-—z(xgt)?, (s,t) € A,

where i # j and where the integral is given as an L2-limit of left-point Riemann—
Stieltjes approximations. For more details on Gaussian processes in the context of
rough path theory, we refer to [FVI0b, Chapter 15].

Proposition 3.7. Let (X¢)¢cjo,r) be a d-dimensional separable centered Gaussian
process with independent components and cadlag sample paths. If for every g > 1

(3.7) sup Z IE[Xs: @ Xyo|? < 00,
PP [s,t]€P,[u,v]€P’

then (X,X) € WP([0,T);RY) for every p € (2,3) P-almost surely, where X is de-
fined as in [B.8) and X exists in the sense of an L*-limit of Riemann-Stieltjes
approximations for i # j.

Proof. Proceeding as in [FS17, Section 10.3], the sample paths of X have finite
p—Varlatlon for any p > 2 due to BX) and there exists a centered Gaussian pro-
cess X with continuous sample paths such that XoF = X, where F i) =
SUPPD D[y 0)eP | Xi — X;|L2 for every i =1,...,d.

By [EVI0a, Theorem 35 (iv)] the integral [, XidX] exists as the L2-limit of
Riemann—Stieltjes approximation and has continuous sample paths. Furthermore,
using the Young—Towghi maximal inequality (see [FVI1Il Theorem 3]) it can be
verified that

(3.8)
XIdXoF(t) = li XX —X1,) = 1i Xi (XI,—X] .
/0 T 'ro ( ) |P1\IEO Z VA u/\) \’PllIEO Z uf( vA uN )7
[u,v]€P [u,v]eP
for i,7 = 1,...,d with i # j, where the limits are taken in L? and in Refinement

Riemann-Stieltjes sense (cf. [ESI7, Definition 1]). We denote by [; X\ dX] the
integral from (B.8]), which has cadlag sample paths.

It remains to check condition (3:2)) for fo X! _dXJ, which then implies the propo-
sition by Theorem 3.1l With an abuse of notation, we now write X for X*?, and X for
X7. Let X™ be given as in (3.1)) such that || X" —X_ || < 27". We define for Y™ :=
X"—X_, and for s,u € [0,T] we set R"(]) := E[Yg,Yg,] and ]:E(Z) = B[ X0, Xo.].
Thanks to (31, R has finite g-variation for any ¢ > 1. We claim that R™ has finite
p-variation for any p > 2. Indeed, for every rectangle [s, t] x [u,v] C [0, T]?, we have
YL YR )P < [IY5 1Y, 2. Using [BOWI6, Proposition 1.7] and the defi-
nition of X" we obtaln that E[||[Y™|? S E[l| XD var] < 0o. Then, by Jensen’s
inequality we deduce that

[Hyn”pvar >Sup Z IE| t|p >Sup Z p/2_SU.p Z || t||L27

[s,t]eP [s,t]eP [s,t]eP

—Val‘]
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which means that Y™ has finite p-variation w.r.t. the L?-distance. Let 1Y ™| p-var

denote the p-variation norm of Y™ in the L2-distance; then c, (s, ) :=|||Y"||[?..
pvari[s, ]

is superadditive and ¢, (0,T) < E[||X|b_,.,] for all n. Hence, for any partitions P,
P’ of [0,T] and for

t t t
Rn(57 > = R" (5> —|—Rn( > _R" (S> _Rn( >’ U,'U,S7t e [O’T],
U, v u v v u

it holds that
A\ P
S ow(l) s X atonoa.n? SEIXIw
[s,t]€P,[u,v]eP’ ’ [s,t]€P,[u,v]eP’

Now, for any p > 2, we can choose any ¢ > 1 close enough to 1 such that 1/p +
1/¢ > 1. Since Y™ and X are independent, applying the Young-Towghi maximal
inequality to the discrete integrals E[(3_, < S/;?jzti,tiJrl)Q} and then sending |P] to
zero, by Fatou’s lemma we obtain that

t 2
EK/ YO’deXT> } SV (RMV,(R), te0,T),
0
where V,, denotes p-variation on [0,77? in the sense of [FV1I] Definition 1], given

by
sogp(x )

’
PP [s,t]€P,[u,v]€P’

for a function R: [0,T]? — R. By an interpolation argument we have for p’ > p,
V) < Vi (s

e
sF#Et,uFv u,v .

Hence, noting that [R™(*!)| = [E[Y,Y,2,]| < 272" due to [|[Y"|lo < 277, the
above inequality applied for p’ and ¢ with 1/p’ +1/q > 1 gives

t 2
EK/ YOTdeXT) } < V(B V(B2 2,
0

In particular, for a given p > 2 and £ > 0, we choose p’ = p/e, and for a corre-
sponding parameter ¢ close enough to 1 such that 1/p’ + 1/ > 1, we get

t 2
EK/ YO’deXT) } <, 27 2n(l=e),
0

Then by Chebyshev’s inequality, for each n and each ¢ € [0, T] we have (note that

Yy =0)

t t 2
P( / Y'Tnd)?r > 2n(12s)> < 22n(125)E|:</ YOTjrd)ZT) :| SE 9—2ne

0 0

Since the right-hand side of the above inequality is summable over n € N, by the
Borel-Cantelli lemma, we conclude that for every ¢ € [0, 7] there exists a ©;, C Q
with P[;] = 1 such that for every w € Q, when n is large enough (n may depend
on w and t),

t
/ (X" — XT)dXT} < g nli=e)
0
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holds. Let Dy be any countable dense subset in [0,7] containing T and Q=
Miep, $2- Therefore, condition ([B.2)) is satisfied for every w € €2, which finishes the
proof. O

Remark 3.8. The Gaussian rough path as constructed in Proposition 3.7 is in fact
a weakly geometric cadlag rough path which coincides with the one given in [FS17,
Theorem 60]. However, while the proof of [FS17, Theorem 60] is entirely based
on time-change arguments and on corresponding well-known results for continuous
Gaussian rough paths, the above proof gives a direct verification of the required
rough path regularity via Theorem [B11

3.3. Typical price paths. In recent years, initiated by Vovk, a model-free, hedg-
ing-based approach to mathematical finance emerged that uses arbitrage consider-
ations to investigate which sample path properties are satisfied by “typical price
paths”; see for instance [VovO8 [TKT09,[PP16]. In particular, Vovk’s framework
allows for setting up a model-free It6 integration; see [PP16L[EPPT8|[Vov16]. Based
on this integration, we show in the present subsection that “typical price paths”
can be lifted to cadlag rough paths.

Let Q4 := D([0, T]; R%) be the space of all nonnegative cadlag functions w: [0, 7]
— Ri. The space 21 can be interpreted as all possible price trajectories on a
financial market. For each ¢ € [0,T], Fy is defined to be the smallest o-algebra
on Q4 that makes all functions w — w(s), s € [0,t], measurable and F; is defined
to be the universal completion of F7. Stopping times 7: Q4 — [0,T] U {o0} w.r.t.
the filtration (F):epo,7) and the corresponding o-algebras F. are defined as usual.
The coordinate process on €2 is denoted by S = (S!,...,599), i.e., Si(w) := w(t)
and S!(w) 1= wi(t) for w = (wl,...,w?) €Qy,t€[0,T)and i = 1,...,d.

A process H: Q0 x [0,T] — R? is a simple (trading) strategy if there exist a
sequence of stopping times 0 = 09 < 01 < g9 < --- such that for every w € Q
there exist an N(w) € N, such that o,(w) = opt1(w) for all n > N(w), and a
sequence of F, -measurable bounded functions h,: Q; — R?, such that H;(w) =
Y omeo (W)L (o, (w),om i () () for t € [0, T]. Therefore, for a simple strategy H the
corresponding integral process

(H - 8)1(w) == > hn(@)Sontionyint(w)
n=0
is well defined for all (¢,w) € [0,T] X Q,. For A > 0 we write H, for the set of all
simple strategies H such that (H - S)¢(w) > —A for all (t,w) € [0,T] x Q.

Definition 3.9. Vouk’s outer measure P of aset A C §), is defined as the minimal
superhedging price for 14, that is,

P(A) := int {)\ >0 : 3(H ey C Ha
s.t. Vw € Qy : liminf(A + (H" - S)7r(w)) > 14(w) }
n— oo

A set A C Q4 is called a null set if it has outer measure zero. A property (P) holds
for typical price paths if the set A where (P) is violated is a null set.

Note that P is indeed an outer measure, which dominates all local martingale
measures on the space Q0 ; see [LPP18, Lemma 2.3 and Proposition 2.5]. For more
details about Vovk’s outer measure we refer for example to [EPP18| Section 2].
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Proposition 3.10. Typical price paths belonging to Q1 can be enhanced to cadlag
rough paths (S, A) € WP([0,T};R?) for every p > 2 where

t s
Agy = / S,_ ®dS, — / S, ®dS, — S.® Sss, (s,t) € Ar,
0 0

and [ S_ ®dS denotes the model-free It6 integral from [LPPI8, Theorem 4.2].

Proof. Tt follows from [Vov1lll Theorem 1] that typical price paths belonging to £
are of finite p-variation for every p > 2. Hence, it remains to check condition (32)
of Theorem [B.] to prove the assertion.

Let S™ be the dyadic approximation of S as defined in [BJ]) for n € N and let
us recall that [LPP18|, Corollary 4.9] extends to the estimate

<{H/ (57~ ®dSH > an}ﬂ{l[S]T < BN{1S] < b}> S 6(VBr242m) 2,

1/2
3

where ¢, == [|S™ — Sl S 277, |[S]7] = (Z” 187, 5913, d [S%,87] de-

notes the quadratic co—varlatlon as defined in [EPP18, Corollary 3.11]. Due to
the countable subadditivity of P, it is enough to consider a fixed b > 0. Set-
ting a, := 279" for ¢ € (0,1) and applying the Borel-Cantelli lemma for P
(see [LPPI8, Lemma A.1]), we get P(By) = 0 with

Bb = ﬂ U Ab,n

meNn>m

and

v {[ [1sm-s0@as| zafnuisi<nnisi <o

In particular, for typical price paths (belonging to €2,) we have

for all n € N, and thus typical price paths satisfy condition (3.2)). |

/ (5"~ S) ®dSH <, 2-0-om
0

o0

Let us briefly comment on various aspects of Proposition [3.101
Remark 3.11.

(1) Proposition BI0 implies the (robust) existence of It cadlag rough paths in
the sense that the set of all nonnegative cadlag paths which do not possess an
It6 rough path has measure zero with respect to all local martingale measures
on . This justifies taking the existence of Itd rough paths above price paths
as an underlying assumption in model-free financial mathematics.

(2) The nonexistence of Ité cadlag rough paths above nonnegative price paths
leads to a pathwise arbitrage of the first kind; cf., [LPP18| Proposition 2.6].

(3) In the case of continuous (price) paths the assertion of Proposition 10l was
obtained in [PP16, Theorem 4.12].

(4) Proposition can be generalized in a straightforward manner from . to
the more general sample spaces considered in [LPPTE].
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