
PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 146, Number 12, December 2018, Pages 5421–5435
https://doi.org/10.1090/proc/14055

Article electronically published on September 10, 2018

EFFECTIVELY CLOSED SUBGROUPS OF THE INFINITE

SYMMETRIC GROUP

NOAM GREENBERG, ALEXANDER MELNIKOV, ANDRE NIES,
AND DANIEL TURETSKY

(Communicated by Heike Mildenberger)

Abstract. We apply methods of computable structure theory to study ef-
fectively closed subgroups of S∞. The main result of the paper says that
there exists an effectively closed presentation of Z2 which is not the auto-
morphism group of any computable structure M . In contrast, we show that
every effectively closed discrete group is topologically isomorphic to Aut(M)

for some computable structure M . We also prove that there exists an effec-
tively closed compact (thus, profinite) subgroup of S∞ that has no computable
Polish presentation. In contrast, every profinite computable Polish group is
topologically isomorphic to an effectively closed subgroup of S∞. We also
look at oligomorphic subgroups of S∞; we construct a Σ1

1 closed oligomorphic
group in which the orbit equivalence relation is not uniformly HYP. Our proofs
rely on methods of computable analysis, techniques of computable structure
theory, elements of higher recursion theory, and the priority method.

1. Introduction

The study of computable presentations of topological groups originated in com-
putable field theory [MN79] and was mainly driven by Nerode’s interest in algo-
rithmic aspects of Krull theory. Working under the supervision of Nerode, La
Roche [LR81] proved that the correspondence between computable algebraic num-
ber field extensions and profinite groups is uniformly effective. Quite interestingly,
the algorithmic techniques developed in [LR81] allowed La Roche to prove a theorem
on free profinite groups that was new even in the purely algebraic (non-computable)
setting; see [Jar74] for the earlier and a weaker purely algebraic result. Based on
the work of La Roche, Smith [Smi81,Smi79] initiated the study of algorithmic pre-
sentations of profinite groups in their own right, i.e., not in the context of effective
Galois theory.

Such investigations in computable topological groups have not been restricted to
profinite groups; an example of study in the more general direction is [GR93]. How-
ever, the general theory of computable Polish groups remains at an initial stage.
Recently there has been an increased interest in computable aspects of Polish and
Banach spaces [PER89,BHW08,Mel13,McN15] and, consequently, in computable
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Polish groups [MM,Mel]. Many aspects of computable Polish groups are related
to computable structure theory [AK00,EG00] and computable Banach space the-
ory [PER89]. Such connections are often quite subtle. For example, it turns out
that many classical results of computable structure theory have simpler proofs in
the more general setting of a computable Polish group action; see [MM]. On the
other hand, the study of Pontryagin Duals of computable Polish abelian groups
enjoys applications of non-trivial effective algebraic results; see [Mel]. It seems that
effective algebra and computable topological group theory are two adjacent pieces
of a bigger puzzle. This paper contributes to the general framework proposed in
[Mel13] that is focused on establishing further technical connections between com-
putable structure theory and computable analysis.

Recall that a countably infinite and discrete algebraic structure (e.g., a countable
field of characteristic 0) is computable if its domain is ω and its operations and
relations are Turing computable. Our main goal is to investigate automorphism
groups of computable algebraic structures. For this purpose we consider effectively
closed subgroups of S∞. These are the subgroups of S∞ which are effectively closed
subsets of a natural computable metric space structure on S∞, which we define in
Section 2 below. Equivalently (Corollary 2.4) they are the intersection with S∞
of effectively closed subsets of Baire space ωω. Since the domain of a computable
structure M is ω, its automorphism group Aut (M) is a subgroup of S∞, and in
fact it is effectively closed.

It is well-known that every closed subgroup of S∞ is equal to the automorphism
group of some countable algebraic structure on ω (see for example [Gao09, Thm.
2.4.4]). It is natural to ask:

Is every effectively closed group equal to Aut(C) for some com-
putable C?

We will see that the answer to this question is negative, which seems somewhat
counterintuitive. The reader perhaps suspects that the isomorphism type of any
effectively closed subgroup of S∞ witnessing the negative answer should be, in some
sense, non-trivial. Remarkably, already the two-element cyclic discrete group Z2

has a “bad” effectively closed presentation. On the other hand, Z2 is (topologically)
isomorphic to Aut(C) for some computable structure C. An effectively closed copy
of a topological group G is an effectively closed subgroup of S∞ (topologically)
isomorphic to G.

Theorem 1.1.

(1) There is an effectively closed copy G of the two-element cyclic group Z2

such that G �= Aut(C) for any computable structure C.
(2) Every effectively closed discrete group is topologically isomorphic to Aut(C)

for some computable structure C.

The main difficulty in the proof of Theorem 1.1(1) is nesting strategies on top
of each other and not losing the property of being a subgroup of S∞. We leave
open whether Theorem 1.1(2) can be extended to general effectively closed groups.
The proof of Theorem 1.1(2) is related to a characterisation of discrete, effectively
closed subgroups of S∞ (Remark 5.5) and the complexity of their orbit equivalence
relations.

The concept of effectively closed subgroups of S∞ is natural in its own right,
closed subgroups of topological groups, including S∞, are studied in depth, and
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effectively closed sets play a significant role in recursion theory; for some recent
applications see [BC08,Rei08,HK14]. It could be the case that the notion is actually
equivalent to one of the already existing notions restricted to closed subgroups
of S∞. We will compare this concept with the notions of a computable Polish
group [MM,Mel] and a recursively presented profinite group [LR81, Smi81], which
we mentioned above (we give the formal definitions in Section 2). Every recursively
presented profinite group is computable Polish, but there are computable Polish
profinite groups with no recursive presentation [Mel].

Theorem 1.2.

(1) There is an effectively closed, profinite subgroup of S∞ that has no com-
putable Polish copy (and therefore no recursive presentation).

(2) Every profinite computable Polish group has an effectively closed copy.

In particular, Theorem 1.2(1) shows that the notion of effectively closed sub-
groups of S∞ is new, while Theorem 1.2(2) establishes a connection between this
notion and computable Polish groups. The proof of Theorem 1.2(2) in fact gives a
group Aut(M) for a computable structure M, which in light of Theorem 1.1(1) is
stronger.

We end the paper by looking at the class of oligomorphic groups. These are the
closed subgroups G of S∞ for which for every n there are only finitely many G-orbit
equivalence classes of n-tuples (every subgroup of S∞ acts on ωn in the natural way).
Oligomorphic groups are the automorphism groups of ℵ0-categorical structures.
These structures are homogenous. Thus, if an effectively closed subgroup G of S∞
is oligomorphic and equals Aut(M) for some computable structure M , then the
orbit equivalence relation ∼G will be relatively simple: 0(ω)-computable. If the
signature of M is finite and M has quantifier elimination, then ∼G is computable
(uniformly in n). We approach the question “how complicated can ∼G be for
an effectively closed oligomorphic G?” If we could construct an effectively closed
oligomorphic group with complicated ∼G, we would get another example for our
main result, Theorem 1.1(1). Oligomorphic groups lie at the other extreme from
profinite groups, for which every orbit equivalence class is finite. Our initial hope
was that it might perhaps be easier to handle them. This hope was ill-founded, yet
the effective content of oligomorphic groups turned out to be interesting in its own
right.

The natural upper bound for the complexity of ∼G for effectively closed groups G
is Σ1

1; this upper bound does not change even if the group G is Σ1
1. Even in that

case, if G is oligomorphic, then for each n, the restriction of ∼G to n-tuples must be
hyperarithmetic. Interestingly enough, this fact lacks uniformity in the following
sense.

Theorem 1.3. There is a Σ1
1, closed oligomorphic subgroup of S∞ for which ∼G

is not hyperarithmetic.

It would be interesting to obtain more information about the effective content
of oligomorphic groups. In particular, we leave open whether an effectively closed
oligomorphic group can witness Theorem 1.1(1).

The structure of this paper is as follows. The short Section 2 contains formal
definitions, a description of the natural computable Polish presentation of S∞, and
the equivalent definition of effectively closed subgroups of S∞ using the inherited
topology from Baire space. We arrange proofs according to the methods used.
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Section 3 contains the proof of Theorem 1.2, Section 4 the proof of Theorem 1.1(1),
and Section 5 the proofs of Theorems 1.1(2) and 1.3.

2. Preliminaries

Throughout this paper we work in the category of topological groups. We only
consider isomorphisms between groups that are both algebraic and topological, i.e.,
homeomorphisms, so henceforth “isomorphic” means “topologically isomorphic”.

Definition 2.1. A computable Polish (metric) space is a triple (M,d, (αi)i∈ω),
where M is a Polish space, d is a complete compatible metric on M , the sequence
(αi)i∈ω is dense in M , and there exists a uniformly computable procedure which
on input i, j ∈ ω and ε ∈ Q+, outputs a rational r such that |d(αi, αj)− r| < ε.

The points from the dense computable sequence (αi)i∈ω are called special. A ball
with a rational radius and centred in a special point is called basic. Baire space,
ωω, under the usual ultrametric forms a computable Polish space. The basic open
balls are the usual clopen neighbourhoods: the ones determined by finite sequences
of natural numbers.

A subset U of a computable Polish space is effectively open if it is the uniform
union of basic open sets, that is, if there is a c.e. set W ⊆ ω × Q+ such that
U =

⋃
(i,q)∈W B(αi, q). Note that we are not required (and outside the compact

case, not always able) to enumerate all the basic open balls which are subsets of U .
A set is effectively closed if its complement is effectively open.

If X and Y are computable Polish spaces, then we say that a map F : X → Y is
computable if for every effectively open set U ⊆ Y, F−1[U ] is an effectively open
subset of X, uniformly : from an index for U we effectively obtain an index for
F−1[U ]. It suffices to enumerate F−1[B] uniformly for the basic open balls B.

For the following definition, observe that the product of two (or more) com-
putable Polish spaces is itself computable Polish.

Definition 2.2 ([MM]). A computable Polish group is a computable Polish space
which is a topological group for which the group operation · and inverse −1 are
computable.

We now discuss the infinite permutation group S∞ ⊂ ωω. The usual ultramet-
ric d inherited from Baire space is left-invariant for S∞ but is not complete: S∞ is
not a closed subset of ωω. A complete metric which gives the same topology is as
follows: for f, g ∈ S∞ let

D(f, g) =
d(f, g) + d(f−1, g−1)

2
.

We let the special points be the permutations of ω with finite support. This
makes S∞ a computable Polish group.

The compatibility of the metrics d and D is effective. Formally, what this means
is that the identity map from (S∞, D) to (ωω, d) is computable, and its inverse is a
partial computable map. We work more concretely by giving finite descriptions to
effectively open sets, including all the basic open balls. For any finite partial map σ
from ω to ω, [σ] is defined to be the set of f ∈ ωω which agree with σ: f(n) = σ(n)
for all n ∈ domσ. For each finite partial map σ, [σ] is an effectively open subset
of ωω, every basic open set is of the form [σ] for some σ (indeed, precisely for those
finite maps whose domains are finite initial segments of ω), and a set U ⊆ ωω is
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effectively open if and only if there is a c.e. set W of finite partial functions such
that U = [W ] =

⋃
{[σ] : σ ∈ W}.

Proposition 2.3. A set V ⊆ S∞ is effectively open if and only if there is an
effectively open set U ⊆ ωω such that V = U ∩ S∞.

Proof. Indeed the proof will show that the translation is uniform. A basic open
ball in S∞ is determined by specifying the values of a permutation on a finite initial
segment of ω and the values of its inverse on a finite initial segment of ω. That is,
a basic open ball is of the form

[σ; τ ] =
{
f ∈ S∞ : σ ≺ f & τ ≺ f−1

}

where σ, τ ∈ ω<ω, that is, are finite partial functions whose domain is an initial
segment of ω. Of course this is empty unless both σ and τ are injective, σ agrees
with τ−1, and τ agrees with σ−1. Now given a finite map ρ from ω to ω,

[ρ] ∩ S∞ =
⋃

{[σ; τ ] : σ extends ρ} ,

whereas

[σ; τ ] = [σ ∪ τ−1] ∩ S∞. �

Corollary 2.4. A set P ⊆ S∞ is effectively closed if and only if there is a co-c.e.
set C of finite partial injective functions such that

P = {f ∈ S∞ : f disagrees with every σ ∈ C} .

Corollary 2.4 will be our “working definition” for defining effectively closed sub-
groups of S∞.

We turn to another notion of effectiveness for profinite groups. Recall that a
group is profinite if it is isomorphic to the inverse limit of a system

G0 ← G1 ← G2 ← . . .

where each Gi is a finite group and all the maps are surjective group homomor-
phisms.

Definition 2.5 ([LR81,Smi81]). A recursive presentation of a profinite group P is
a uniformly computable inverse system of finite groups, with surjective homomor-
phisms, whose inverse limit is isomorphic to P .

We note that the use of the term “recursive presentation” is different from the
one in combinatorial group theory [LS77] (which applies only in the discrete case).

It is known that recursively presented profinite groups are exactly the automor-
phism groups of computable algebraic number fields over a computable subfield;
see [LR81]. As we mentioned above, every recursive profinite group is computable
Polish, but there are computable Polish profinite groups with no recursive presen-
tation [Mel].

3. Effectively closed vs. computable Polish

Proof of Theorem 1.2(1). We construct an effectively closed subgroup of S∞ that
has no computable Polish copy. We will be using the result below:

Fact 3.1 ([Mel, Cor. 1.8]). Every computable Polish profinite group P has a
0′-computable presentation.
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For a set S of prime numbers let

PS =
∏

p∈S

Zp,

where Zp is the cyclic group of order p. This group is profinite, as it is the inverse
limit of the groups

∏
p∈S∩n Zp for n < ω.

First we observe that if PS has a computable Polish copy, then S is Σ0
2. To see

this, by Fact 3.1 and [Mel, Thm. 1.9] there is a 0′-computable copy, in the sense
of computable structure theory, of the discrete countable group

⊕
p∈S Zp, which is

the Pontryagin dual of PS (see the book [Pon66] for more on Pontryagin’s duality
theory). Using this copy we can 0′-computably list the prime orders of elements of
the group, showing that S is Σ0

2.
So it suffices, given a Π0

2-complete set S of primes, to build a computable struc-
ture M such that Aut(M) is isomorphic to PS . The structure M will be a graph
consisting of infinitely many disjoint components Cp, one for each prime p. Every
Cp will have a loop of length p,

xp
0 − xp

1 − . . .− xp
p−1 − xp

0,

and every node in the loop will have a [finite or infinite] chain

xp
i − cpi,1 − cpi,2 − . . .

attached to it. The length of the chain depends on our approximation for the Π0
2

predicate for p. More specifically, fix a recursive predicate R such that p ∈ S ⇐⇒
∃∞xR(p, x) for every p. If p /∈ S, then this predicate “fires” for p only finitely many
times, say s. In this case, we make the length of the ith chain equal to s+ i. The
result is a rigid component. If p ∈ S, then we make each of the p many chains
infinite. In this case the automorphism group of the component will be isomorphic
to Zp. Each automorphism is determined by the image of xp

0, which could be any
xp
i .
Because there is no interaction between the components,

Aut(M) ∼=
∏

p∈S

Aut(Cp) ∼= PS .

This isomorphism is topological as well, because in both copies, the topology is
the product topology where the components Aut(Cp) and Zp are discrete. In other
words, in both Aut(M) and Cp, the sub-basic clopen sets are determined by stating
finitely many values for the automorphism. �

Proof of Theorem 1.2(2). Let P be a computable Polish profinite group. We need
to produce an effectively closed copy of P . By Fact 3.1, there is a 0′-recursive
presentation of P . We will use a fully relativised form of the fact below.

Fact 3.2 (LaRoche [LR81]). Every recursively presented profinite group is isomor-
phic to Gal(K/N), where K is a computable algebraic extension of Q, and N is a
computable subfield of K.1

1We note here that the Corollary after Proposition 2 on p. 390 of [LR81] is stated in terms of
co-r.e. presented profinite groups and r.e.-presented fields. But (as expected) recursive profinite
groups correspond to recursive fields; see Theorem 1(2) of the same paper.
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In fact, N is a fixed computable field that corresponds to a natural recursive pre-
sentation of the free profinite group upon countably many generators; see [LR81].
That is, N does not depend on K and on the recursive profinite group. This
fact can be partially relativised to 0′-recursive profinite groups. Note that N
stays computable under this relativisation. Fix a 0′-computable field K such that
Aut(K/N) ∼= P . Our first step is to obtain a 0′-computable relational struc-
ture F (with computable underlying set and in a computable language) such that
Aut(F ) ∼= Aut(K/N) (all isomorphisms are topological); then we obtain a com-

putable structure F̂ such that Aut(F̂ ) ∼= Aut(F ).
To define F , we start with K. We name each element of N by a singleton unary

predicate and replace the field operations by their graphs. Note that Aut(F ) ∼=
Aut(K/N). The next step is a version of Marker’s existential extension which
preserves the automorphism group.

Proposition 3.3. For any ∅′-computable relational structure A there is a com-
putable structure B such that Aut(A) and Aut(B) are isomorphic.

Proof. We use the Ash-Knight technique of coding complexity into pairs of struc-
tures. What we observe is that the structures involved can be rigid.

Fact 3.4 ([AK90]). Let S be a Σ0
2 set. There exists a uniform procedure which,

for each x ∈ ω, outputs a computable copy of ω if x ∈ S and outputs a computable
copy of ω2 otherwise.

Proof sketch of Fact 3.4. Fix an increasing sequence x0, x1, . . . of type ω and a
computable predicate P such that y ∈ S ⇐⇒ ∃∞zP (y, z). For each i, make the
interval [xi, xi+1) isomorphic to ω � n if ∃nzP (y, z). �

We assume that the underlying set of A is a computable set, with a computable
language. Define B as follows. The universe of A will be a subset of the universe
of B. For each n, every n-ary relation P of A, and every tuple ā ∈ An we fix an
infinite set CP

ā . These subsets will be pairwise disjoint for different choices of ā
and P and each disjoint from A. This defines the universe of B. The relations of B
are:

• a unary predicate picking out the elements of A;
• for each n-ary relation symbol P of A, the (n+ 1)-ary relation y ∈ CP

x̄ ;
• a binary relation < which linearly orders each CP

ā ; if PA(ā) holds, then
CP

ā
∼= ω; if not, then CP

b̄
∼= ω2.

Fact 3.4 implies that B has a computable copy.
We show that Aut(A) ∼= Aut(B). Let f ∈ Aut(B). Then f � A is an auto-

morphism of A: for any relation symbol P of A and ā ∈ A, f must map CP
ā onto

CP
f(ā), and PA(ā), PA(f(ā)) depend on the order-type of CP

ā and CP
f(ā), which are

isomorphic (by f). Further, f is determined by f � A: as observed, f must map CP
ā

to CP
f(ā), and as ω and ω2 are rigid, the order-isomorphism between CP

ā and CP
f(ā)

is unique. Similarly we observe that every automorphism of A can be extended to
an automorphism of B.

Let Φ: Aut(B) → Aut(A) be the restriction map, Φ(f) = f � A. This is a group
isomorphism; it remains to see that it is topological. In the slightly less immediate
direction, we need to check that it is an open map. We use Corollary 2.4. Let σ be
a finite injective map from ω to ω which determines a basic open set [σ]∩Aut(B).
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The point is that σ may mention some elements of B \ A. Nonetheless, Φ[σ] is
clopen in Aut(A). If q ∈ CP

ā is mapped to some p ∈ CP
b̄
, then to the image of [σ]

we add the restriction that ā is mapped to b̄. Since ω and ω2 are rigid, mapping ā
to b̄ is equivalent to mapping q to p. �

This completes the proof of Theorem 1.2(2). �

4. Proof of Theorem 1.1

We must construct a Π0
1 presentation of Z2 which is not equal to Aut(M) for

any computable structure M (upon the domain of ω).

Informal idea. We explain the basic idea behind diagonalising against the eth
partial computable structure Me. We work in ωω. We start by enumerating a
certain neighbourhood into the complement of the presentation, and we say that
we “forbid” the neighbourhood. For some basic ā → b̄ within this neighbourhood,
we must have ā �→ b̄ inMe (i.e., there is no automorphism ofMe extending this finite
map), as witnessed by some first-order atomic φ. Nonetheless, keep in mind the
possibility that Me is not total; in this case we will have to wait forever. For now,
assume Me responds. Then, for some c̄, it should be the case that φ(c̄) or ¬φ(c̄),
and thus necessarily either ā �→ c̄ or c̄ �→ b̄. Until this happens the construction
will proceed in some fixed basic neighbourhood, say ā → c̄. Once we see that φ ↓
and says that c̄ �→ b̄ (if ever), we switch to c̄ → b̄ and forbid ā → c̄. The key here
is that we don’t have to instantly forbid the neighbourhoods, but Me must (unless
it is not total). We can put sub-neighbourhoods of a given neighbourhood into
our effectively open set one-by-one. Thus, we can delay our decision and do the
opposite in the group presentation.

The trickier part is nesting the strategies on top of each other. For that, our
construction will proceed only within nested clopen subsets extending x̄ ↔ ȳ (the
notation should be self-explanatory, to be clarified in Definition 4.1), where x̄ is an
initial segment of ω, ȳ is a permutation of x̄, and the order of this permutation
is 2. If we make sure x̄ā �→ x̄b̄ in Me, we can still fix a tuple ȳc̄ and repeat the
basic diagonalisation idea, as above. It must be the case that either x̄ā �→ ȳc̄ or
ȳc̄ �→ x̄b̄ is witnessed by some first-order φ, but both events can be restricted to
the neighbourhood x̄ ↔ ȳ. The key here is to choose numbers in c̄ to be very large,
so that both neighbourhoods x̄ā → ȳc̄ or ȳc̄ → x̄b̄ contain sub-neighbourhoods
isolated by finite permutations of order 2. Then the construction can proceed in
one of the two neighbourhoods. With some care we will end up with a copy of Z2.
The rest is handled by priority nonsense.

Proof. Fix a computable listing (Me)e∈ω of all (partial) computable structures upon
the domain ω. We construct a Π0

1-subgroup P of the standard copy of S∞ and meet
the requirements:

P �= Aut(Me),

for each e. We will also (globally) ensure that P ∼= Z2.
We identify finite injective partial maps and the respective basic neighbourhoods

in S∞ determined by their possible extensions.

Definition 4.1. We say that an injective finite map x̄ → ȳ is nice if it is a finite
permutation of an initial segment of ω and has order 2 (i.e., is an involution). We
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write x̄ ↔ ȳ to emphasise that the map and its respective basic neighbourhood are
nice.

All our diagonalisation strategies will be working within (0, 1) ↔ (1, 0). Some
of the basic neighbourhoods will be enumerated into the complement of P . If
we enumerate a certain neighbourhood into S∞ \ P , we say that we forbid the
neighbourhood. There will be no interaction between the process of approximating
Idω and the procedure of approximating the only non-identity element of P .

The basic strategy. We describe the basic diagonalisation strategy, for Me, in
isolation. The strategy will be working within a nice σe = x̄ ↔ ȳ.

(1) Forbid x̄n → x̄(n + 1), where n = lth(x̄). (Note that x̄n → x̄(n + 1) will
be forbidden by the construction anyway because of its proximity to Idω,
so we could simply wait until this happens.)

(2) Wait forMe to separate some x̄ā and x̄b̄ extending x̄n and x̄(n+1) (and hav-
ing the same length) by a first-order atomic formula φ. Until this happens, if
ever, let the construction proceed within the nice neighbourhood x̄n ↔ ȳn.
One-by-one, start forbidding all other sub-neighbourhoods σe = x̄ ↔ ȳ of
the form x̄n → ȳk, k �= n. (If Me is total but never gives such a φ, then
there exists an automorphism of Me extending x̄n → x̄(n + 1). To build
such an automorphism, run a back-and-forth argument on extensions of x̄n
and x̄(n+ 1).)

(3) If such a φ is found, choose c̄ consisting of very large and fresh numbers
(and of the same length as ā and b̄). Proceed as follows:
(a) Extend the finite partial maps x̄ā → ȳc̄ and ȳc̄ → x̄b̄ to (finite) per-

mutations of order 2, and let N1 and N2 be the respective nice sub-
neighbourhoods. Since x̄ ↔ ȳ is nice, bothN1 andN2 belong to x̄ ↔ ȳ.
By the choice of c̄, these permutations have not been forbidden yet.
Stop the process of forbidding sub-neighbourhoods of x̄ ↔ ȳ initiated
at step (2).

(b) Forbid what is left of x̄n ↔ ȳn. (Note that weaker priority strategies
have been working in this neighbourhood.)

(c) Start forbidding extensions of N2, one-by-one, and let the construction
(i.e., all the weaker priority strategies) proceed within N1. Forbid all
basic open neighbourhoods that do not contain Idω and are disjoint
from N1 and N2.

(4) Wait for Me to evaluate φ on ȳc̄, thus witnessing either x̄ā �→ ȳc̄ or ȳc̄ �→ x̄b̄
in Aut(Me). If this never happens, the construction will forever stay inside
N1.

Case 1: x̄ā �→ ȳc̄ in Aut(Me), as witnessed by φ. In this case Aut(Me)∩N1 = ∅.
Proceed as above to (eventually) completely forbid N2 and keep all
weaker priority actions restricted to N1. We will see that in this case
the only non-zero element of P is inside N1.

Case 2: ȳc̄ �→ x̄b̄ in Aut(Me), as witnessed by φ. In this case stop forbidding
N2 and forbid what is left of N1. Choose a nice τ within N2 and
restrict the actions of all weaker priority strategies to τ . Similarly to
Case 1, the only non-zero element of P will be contained in τ .
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Priority and initialisation. We order the strategies according to the index of
the partial computable structure that they are guessing, with smaller indices corre-
sponding to stronger priority. Every time a basic strategy changes its mind about
the neighbourhood in which the construction (i.e., the weaker priority strategies)
should proceed, we initialise all weaker priority strategies. This is done by picking
a new nice neighbourhood σi within the current neighbourhood of the higher pri-
ority strategy in which it allows the construction to proceed. We also make sure
that the diameter of the nice neighbourhood σi of the ith strategy is at most 2−i

(equivalently, we could require that the domain of the finite nice map contain at
least i elements).

Construction. At the beginning of the construction, we will fix a nice basic neigh-
bourhood of Idω (say, (0, 1) ↔ (0, 1)) and some other nice neighbourhood (say,
(0, 1) ↔ (1, 0)) disjoint from it. From this point on, we keep forbidding all (not
necessarily nice) sub-neighbourhoods of (0, 1) ↔ (0, 1) that do not contain Idω. We
set σ0 = (0, 1) ↔ (1, 0).

Verification. We verify some of the key properties of the construction, stage-by-
stage.

Claim 4.2. Suppose Me is total and x̄n �→ x̄(n+1) in Aut(Me) . Then at stage (2)
we can find x̄ā and x̄b̄ extending x̄n and x̄(n + 1), respectively, and a first-order
atomic formula φ that separates x̄ā and x̄b̄.

Proof of claim. Suppose such x̄ā and x̄b̄ and an atomic φ do not exist. This means
that x̄n → x̄(n+1) can be extended to an automorphism of Me in a back-and-forth
fashion, contradicting x̄n �→ x̄(n+ 1). �

We follow the notation and the terminology used in the construction.

Claim 4.3. Suppose substage (3) is reached. Then there exist a tuple c̄ and nice
neighbourhoods N1 and N2 with the desired properties.

Proof of claim. Recall that only finitely many basic neighbourhoods can be for-
bidden at every stage of the construction. In particular, only finitely many sub-
neighbourhoods of σe = x̄ ↔ ȳ of the form x̄n → ȳk, k �= n, have been enumerated
into the complement of the effectively closed set that we build. In particular, we
can choose c̄ so that x̄ā → ȳc̄ has not been forbidden yet. Furthermore, choosing c̄
with elements large enough we can ensure that both x̄ā → ȳc̄ and ȳc̄ → x̄b̄ can be
extended to finite permutations of order 2 which have not yet been forbidden. This
is done by simply setting σ′(j) = i if σ′(i) = j already and by declaring σ′(k) = k
for all other k. �

The importance of choosing c̄ very large in (3) is best illustrated by the simple
example below.

Example 4.4. In the notation as above, suppose x̄ā → x̄b̄ is (0, 1, 2, 7, 11) →
(0, 1, 3, 2, 5). It extends x̄n → ȳ(n+1) which is (0, 1, 2) → (0, 1, 3). Fix A,B,C very
large; they could be equal to 100, 101, 102. Consider (0, 1, 2, 7, 11) → (1, 0, 101, 102,
103) and (1, 0, 101, 102, 103) → (0, 1, 3, 2, 5). We could extend them to (finite)
permutations, say to (0, 1, 2, 7, 11, 101, 102, 103) → (1, 0, 101, 102, 103, 2, 7, 11) and
(1, 0, 2, 3, 5, 101, 102, 103) → (0, 1, 102, 101, 103, 3, 2, 5), respectively. Recall we were
slowly forbidding all neighbourhoods in x̄ ↔ ȳ except for extensions of x̄n ↔ ȳn,
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which is (0, 1, 2) → (1, 0, 2) in this particular case. But 101 is large enough so that
(0, 1, 2, 7, 11) → (1, 0, 101, 102, 103) has not been forbidden yet. The neighbourhood
(1, 0, 2, 3, 5, 101, 102, 103) → (0, 1, 102, 101, 103, 3, 2, 5) has not been forbidden since
102 is large enough. We could easily extend each of these finite maps to permuta-
tions of ω � 103 of order 2 by making all the remaining i < 103 stable under the
permutation. This will give us nice extensions of (0, 1, 2, 7, 11) → (1, 0, 101, 102, 103)
and (1, 0, 101, 102, 103) → (0, 1, 3, 2, 5), which have not been forbidden yet in the
construction. (Note that 2 was accidentally mentioned in the domain of the second
permutation due to the choice of b̄ and ā. If it was not the case, we’d have to choose
a large fresh D and map 2 ↔ D, just to make sure the extension is not forbidden.)
Note that both neighbourhoods are contained within the basic neighbourhood of
(0, 1) ↔ (1, 0).

Claim 4.5. Suppose the eth strategy is never initialised after stage s. Regardless
of the outcome, there exist an s′ ≥ s and a nice neighbourhood Ne such that all
the weaker priority strategies (j > e) perform their actions within Ne.

Proof of claim. The strategy may never find a φ and a pair of witnesses at sub-
stage (2), in which case all weaker priority strategies will work within x̄n ↔ ȳn.
Otherwise, depending on the outcome, it may either stay within N1 forever or it
may eventually switch to N2 and never change the neighbourhood again. �

The basic module of the eth strategy makes sure that no element in the eventually
stable neighbourhood Ne can be in Aut(Me) if Me is total. Note that whenever a
strategy is initialised it can pick a nice neighbourhood within the part of S∞ that has
not been forbidden yet by the higher priority strategies. A straightforward inductive
argument shows that for every e, the eth strategy eventually never changes its
neighbourhood that it keeps unforbidden, and therefore every strategy is eventually
never initialised.

The eth strategy ensures that some nice τe determined by its stable Ne is the
approximation of P \ {Idω}. It follows from the construction that all elements of
S∞ in (0, 1) ↔ (0, 1) that do not extend τe will be eventually forbidden by the eth
strategy. Also, all neighbourhoods outside (0, 1) ↔ (0, 1) that do not contain Idω
will be forbidden in the construction.

Note that the diameter of the nice eventually stable neighbourhood Ne is at
most 2−e and Ne+1 ⊂ Ne for every e. It follows that the intersection of all these
eventually stableNe is a singleton whose only element is the limit of the Δ0

2 sequence
(τe)e∈ω. The singleton describes the only non-Id element Θ of the Π0

1 set P that
we end up with. Note that τ2e = Idsupp(τe), for each e. It follows that Θ2 = Idω.
Thus, P ∼= Z2. �

5. Discrete effectively closed groups and oligomorphic groups

We know that Z2 has a complicated effectively closed copy, but it is also clear
that Z2 has a “nice” copy equal to Aut(M) for some computable structure M . This
elementary observation is a special case of the more general result: Every discrete
effectively closed group P is isomorphic to Aut(M) for some computable structure
M (Theorem 1.1(2)).

To prove the theorem we analyse the complexity of the orbit equivalence relation.
Let G be a subgroup of S∞. For all n < ω, the group G acts on the collection ωn of
n-tuples of natural numbers. The resulting orbit equivalence relation ∼G is defined
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on ω<ω by letting ā ∼G b̄ if |ā| = |b̄| and there is some σ ∈ G such that σ(ā) = b̄.
We prove the following:

Proposition 5.1. If G is a discrete, effectively closed subgroup of S∞, then ∼G is
hyperarithmetic.

(This means that for each n, the orbit equivalence relation for n-tuples is hyper-
arithmetic, uniformly in n.)

Proposition 5.2. If G is an effectively closed subgroup of S∞ and ∼G is hyper-
arithmetic, then there is a computable structure M such that G ∼= Aut(M).

Theorem 1.1(2) then follows. Proposition 5.2 is itself the conjunction of two
lemmas.

Lemma 5.3. Every closed subgroup G of S∞ is equal to Aut(M) for some struc-
ture M computable from ∼G.

Lemma 5.4. For every hyperarithmetic structure M there is a computable struc-
ture N such that Aut(N) ∼= Aut(M).

Lemma 5.4 is a generalisation of Proposition 3.3. Say that M is Δ0
γ for some

computable ordinal γ. We use a generalisation of Fact 3.4 that allows us to code
membership in a Σ0

γ set into an isomorphism type of one of two rigid linear order-
ings which satisfy the same computable Πγ infinitary formulas but are separated
thereafter. For example, we can produce a copy of ωγ+1 if a Σ0

γ fact holds and a

copy of ωγ+2 otherwise; for our purposes, the complexity does not need to be tight.
See [AK90]. The argument then is the same as that of Proposition 3.3.

Lemma 5.3 is an observation that the standard construction of a structure M
such that G = Aut(M) does in fact give us a structure computable from ∼G; see
[Gao09]. For any n and for every∼G-equivalence class of n-tuples we define an n-ary
relation which defines that class. Closure of G is used to show that Aut(M) ⊆ G.

It remains to prove Proposition 5.1.

Proof of Proposition 5.1. Σ1
1 subsets of ω

ω have the perfect set property in a strong-
ly effective way: if a Σ1

1 set A does not have a perfect subset, then all elements
of A are hyperarithmetic, and so by Spector’s Σ1

1 bounding, they are all computable
from some 0(γ) for some fixed computable ordinal γ. (See [Sac90], Thm. 6.2.III.)

By Corollary 2.4, G is a Π0
2 subset of ω

ω. If all elements ofG are 0(γ)-computable,
then 0(γ+2) computes a listing of the elements of G. It then follows that ∼G is
0(γ+3)-computable. �

This proves Theorem 1.1(2).

Remark 5.5. Note that if G is an effectively closed discrete group, then it has a
hyperarithmetical presentation in the sense of computable structure theory (upon
the domain of ω). It is easy to see that this observation gives a characterization of
discrete effectively closed groups in terms of hyperarithmetically presented groups.
We outline the proof of the less obvious implication.

Let G be a countable (discrete) group. Use Cayley’s theorem and map g ∈ G
to the permutation h �→ gh; call it σg. The image is discrete: σg is isolated by
the neighbourhood e �→ g. In this way we obtain a closed subgroup H of S∞
(topologically) isomorphic to G, which is furthermore arithmetical in the diagram
of G; in particular ∼H is HYP. Lemma 5.3 gives an HYPM such thatH ∼= Aut(M),
and Lemma 5.4 allows us to build a computable N such that Aut(M) ∼= Aut(N).



EFFECTIVELY CLOSED SUBGROUPS OF S∞ 5433

5.1. Proof of Theorem 1.3. Recall that a (closed) oligomorphic group is a
(closed) subgroup of S∞ such that for every n there are only finitely many G-
orbits of n-tuples. We construct a Σ1

1, closed oligomorphic subgroup of S∞ for
which ∼G is not hyperarithmetic.

We will construct an array of uniformly computable relations Rn
k with Rn

k being
n-ary. For an injective sequence ā = 〈a1, . . . , an〉 of natural numbers and another
sequence k = 〈k1, . . . , kn〉 of natural numbers we write tpk(ā) for the atomic type
of the tuple ā in the structure consisting of the relations Rm

k for m ≤ n and k < km.
Namely, the type is determined by the values of such Rm

k on tuples (ai1 , ai2 , . . . , aim)
for distinct i1, . . . , im ≤ n (not necessarily in order).

Lemma 5.6. There is a sequence of uniformly computable relations Rn
k on ω such

that:

(1) for all finite sequences k, every consistent k-type is realised; and
(2) for all k, injective ā and b̄, if tpk(ā) = tpk(b̄), then for all l and c /∈

{a1, . . . , an} there is some d /∈ {b1, . . . , bn} such that tpk l̂(ā, c) = tpk l̂(b̄, d).

Proof. We do a recursive construction by stages. At stage s we will have determined
finitely many values of (the characteristic functions of) finitely many relations Rn

k .
The requirements to meet are:

• for each k, every consistent k-type is realised;
• for each n and k, for each injective n-tuple ā, the value Rn

k (ā) is decided;
• the back-and-forth property (2) above applies.

We put all requirements in an ω-list. The first kind of requirement is met by
choosing fresh values for an n-tuple and declaring relations accordingly. For a re-
quirement of the second kind encountered at a stage s, if Rn

k (ā) is not yet defined
by stage s, then we can choose either value. If a requirement of the third kind is
encountered at stage s, if tpk(ā) or tpk(b̄) have not yet been completely determined,
then we decide them and make them distinct. Otherwise, we meet the requirement
by choosing d fresh, a number which has not been encountered yet in the construc-
tion. So we are completely free to determine the value of any relation on any tuple
involving d, and we do it to match tpk l̂(ā, c). �

For an infinite sequence k = 〈k1, k2, . . .〉 of natural numbers, we let Mk be the
structure consisting of the relations Rn

k for all n and all k < kn. The back-and-forth
property implies:

Lemma 5.7. Injective n-tuples ā and b̄ have the same Aut(Mk)-orbit if and only
if they have the same k � n-type.

(Here we abuse notation and let k � n = 〈k1, k2, . . . , kn〉.) Also note that for
each n, there are only finitely many k � n-types of injective n-tuples, and this
implies that the action of Aut(Mk) is oligomorphic. Further, the sequence k is
computable if we are given the number of Aut(Mk)-orbits of n-tuples for each n.
Hence:

Lemma 5.8. For any k, the sequence k is computable given the jump of the
Aut(Mk)-orbit equivalence relation.

The last piece is the following. Call a sequence k left-Π1
1 if its undergraph

{(n, k) : k < kn} is Π1
1.
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Lemma 5.9. There is a left Π1
1-sequence k which collapses ωck

1 , that is, ωk
1 > ωck

1 .

In particular k is not hyperarithmetic.

Proof. Since the Σ1 projectum of Lωck
1

is ω, there is a Δ2(Lωck
1
) increasing sequence

〈αn〉n<ω which is cofinal in ωck
1 ; see for example [Sac90]. In fact, 〈αn〉 has a finite-

change approximation (see [BGM17]): there is a Δ1(Lωck
1
) array (that is, an Lωck

1
-

computable array) 〈αn,s〉n<ω,s<ωck
1

such that writing αn,ωck
1

for αn, we have:

• for all limit ordinals s ≤ ωck
1 , for all n, αn,s = limt→s αn,t; and

• for every n < ω, there are only finitely many stages s < ωck
1 such that

αn,s �= αn,s+1.

We then let kn = #
{
s < ωck

1 : αn,s+1 �= αn,s

}
be the mind-change function for

this approximation. If we are given k = 〈kn〉, then we can find αn by running
the approximation 〈αn,s〉 and waiting for the appropriate number of changes. This
means that 〈αn〉 is Δ1(Lωk

1
)(k), and so ωk

1 > ωck
1 . �

Let k be left-Π1
1. Then Aut(Mk) is closed Σ1

1: we remove a neighbourhood ā �→ b̄
when we see k increase so that tpk�n(ā) �= tpk�n(b̄). If k is not hyperarithmetic, then
by Lemma 5.8, neither is the orbit equivalence relation for the action of Aut(Mk).
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