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Abstract. We prove that the property of a set-valued mapping F : X ⇒ Y to
be locally metrically regular (and consequently, the properties of the mapping
to be linearly open or pseudo-Lipschitz) is separably reducible by rich families
of separable subspaces of X×Y . In fact, we prove that, moreover, this extends
to computation of the functor regF that associates with F the rates of local
metric regularity of F near points of its graph.

1. Introduction

Our discussions in this note will be centered around the following three principal
concepts:

• metric regularity;
• separable reduction;
• rich families of closed separable subsets.
Precise definitions will be given in proper places, and here we just want to

mention that
(a) The concept of metric regularity of mappings (in general, set-valued) is one

of the most fundamental concepts studied in variational analysis. It takes its roots
in the classical regularity concept (the derivative (of a mapping from a Banach
space into another) at a given point is a linear operator onto) which is behind a
series of basic results of the classical analysis such as the implicit function theorem,
the Sard theorem and the Lyusternik–Graves theorem. In variational analysis,
metric regularity and/or its geometric equivalent known as linear openness are the
main instruments in analysis of the existence (in the absence of compactness) and
stability of solutions of inclusions like 0 ∈ F (x). It also offers efficient mechanisms
for proving necessary conditions in optimization problems and plays an important
part in convergence analysis of various optimization algorithms. We refer to [11]
for a state-of-the-art account of the metric regularity theory.

(b) Separable reduction relates to the possibility to reduce the study of a certain
property (e.g., of mappings) on a generally nonseparable space to restrictions of
the property to separable subspaces. Such a reduction often leads to substantial
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simplification of analysis and in certain cases offers the only way to extend to the
general case results otherwise available only in separable spaces. A simple example
of a separably reducible property is continuity of a mapping (see [6]). More and
much less trivial examples can be found there and earlier in [2, 8, 13].

(c) The main property of rich families of subsets of a metric space is that the
intersection of countably many rich families is again a rich family. An immediate
consequence of this fact is that, having countably many properties, each satisfied by
elements of a rich family, we can be sure that all these properties are simultaneously
satisfied on a certain rich family (cf. the Baire category theorem!). The concept
of a rich family was introduced by J. M. Borwein and W. B. Moors in [2] and
thoroughly discussed in [7, 12] in connection with a number of properties relating
to differentiability and subdifferentiability.

It was shown in [10] that the property of a set-valued mapping between a couple
of Banach spaces to be metrically regular near a certain point of its graph is separa-
bly reducible. Here we prove a much stronger result, namely that given a set-valued
mapping F with closed graph from a complete metric space X into another metric
space Y , there is a rich family of “rectangular” closed separable subsets of X × Y
(that is, sets of the form M ×N, M ⊂ X, N ⊂ Y ) such that for any point of the
graph of F the property of F to be metrically regular near the point is separably
reducible via this family. Moreover, the rates of regularity (that is, the modulus of
metric regularity, the rate of surjection, and the Lipschitz modulus) of the mapping
at any point can be recovered from the corresponding rates of the restriction of the
mapping to elements of the rich family.

This fact is certainly interesting by itself. But there are additional and more
practical reasons that make it attractive. The point is that verification of metric
regularity for mappings between separable spaces is much easier. The density the-
orem mentioned in the next section implies that in general the property can be
verified only for countably many points of the graph. In the case when both spaces
are Banach there is another advantage following the fact that the Dini–Hadamard
subdifferential is trusted on any separable normed space. (This means that every
lower semicontinuous function on the space is a Dini–Hadamard subdifferentiable
at all points of a dense subset of the domain of the function and the standard fuzzy
calculus rules are valid; see [5,11].) This gives a universal mechanism for verification
of metric regularity which is the simplest (as the calculation of a Dini–Hadamard
subdifferential is simpler than the calculation of any other subdifferential) and the
most precise, unless the space is Fréchet smooth and we can use the Fréchet subdif-
ferential. It should be noted, however, that on a separable Asplund (hence Fréchet
smooth) space the limiting Fréchet and the limiting Dini–Hadamard subdifferentials
of a Lipschitz function coincide (see [1]).

In what follows X and Y are metric spaces, with X assumed to be complete in
some results, including the main theorem, and F : X ⇒ Y is a set-valued mapping
from X into Y . We shall denote the distance in both by the same letter d and hope
this will not cause any problem or confusion. By B(x, ε) we denote the open ball
of radius ε around x, and for Q ⊂ X the symbol B(Q, ε) stands for the union of all
balls B(x, ε) with x ∈ Q.
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2. Metric regularity

Recall that a set-valued mapping F : X ⇒ Y is metrically regular near (x, y) ∈
Graph F if there are K > 0 and ε > 0 such that

d(x, F−1(y)) ≤ Kd(y, F (x)) for all (x, y) ∈ B(x, ε)×B(y, ε).

Note that it is possible to add to the definition the requirement that d(y, F (x)) < ε.
This does not imply any change of the property (see [9, Proposition 1 on p. 508]).
Denote by regF (x|y) the infimum of all K > 0 for which the inequality above
is satisfied for a suitable choice of ε. It is called the rate (or modulus) of metric
regularity of F near (x, y). The following almost obvious observation plays a crucial
role in the subsequent proofs: regF (x|y) is the infimum of all rational K > 0 with
the specified property. This means that, speaking in what follows about rates of
metric regularity, we can deal only with rational K’s.

The concept of metric regularity has a clarifying geometric interpretation in
terms of the linear openness or covering property (see, e.g., [11, Proposition 2.10]):
K > regF (x|y) if and only if there is an ε > 0 such that for all x ∈ B(x, ε) and all
positive t < ε we have with r = K−1:

B(F (x), rt) ∩B(y, ε) ⊂ F (B(x, t)).

In fact there is no need to verify the inclusion. It is sufficient to show that for any
x and t as above the set F (B(x, t)) is dense in B(F (x), rt) ∩ B(y, ε). This is the
content of the density theorem mentioned in the introduction ([11, Theorem 2.55]).

As before, let X and Y be metric spaces and let K > 0 be given. Let us consider
the following metric in X × Y :

dK((x, y), (x′y′)) := d(x, x′) +Kd(y, y′), (x, y), (x′, y′) ∈ X × Y.1

Further, let F : X ⇒ Y and (x, y) ∈ Graph F . It is said that F is graph regular
near (x, y) if there is a K > 0 such that

(1) d(x, F−1(y)) ≤ dK((x, y),Graph F )

for all (x, y) in a neighborhood of (x, y).
The following fact will play the key role in our analysis.

Proposition 1. Let X and Y be metric spaces, let F : X ⇒ Y , and let (x, y) ∈
Graph F . Then F is regular near (x, y) if and only if it is graph-regular near (x, y).
Moreover, regF (x|y) is the infimum of all rational K > 0 for which (1) holds for
all (x, y) of a neighborhood of (x, y) (depending on K).

The first part of the result (without the statement concerning rate of metric
regularity) was announced by L. Thibault in 1999 in an unpublished note [14]. For
the proof of the proposition see [11, Proposition 2.20]. The following regularity
criterion will be the key element in the proof of the main result.

Theorem 2 (Criterion for local regularity). Let X be a complete metric space, let
Y be a metric space, let F : X ⇒ Y be a set-valued mapping, with closed graph,
and let (x̄, ȳ) ∈ Graph F be given. Suppose that there are ε > 0 and K > 0 such
that for any positive λ < 1 and any (x, y) ∈ B(x̄, ε) × B(ȳ, ε) with y �∈ F (x) there
is a u �= x satisfying

(2) dK((u, y),Graph F ) ≤ dK((x, y),Graph F )− λd(u, x).

1In [11] the symbol d1,K was used to denote this distance.
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Then regF (x|y) ≤ K. Moreover, regF (x|y) is the infimum of all rational K > 0
for which there is a neighborhood of (x, y) (that may depend on K) such that for
any (x, y) �∈ Graph F of the neighborhood and any λ ∈ (0, 1) (2) holds with some
u �= x.

Proof. In the proof and later on we shall often use the simplifying notation

ωK(x, y) = dK((x, y),Graph F )

when F is clear from the context. Obviously, ωK is a Lipschitz function. Note also
that ωK(x, y) ≤ Kd(y, F (x)).

First we shall prove a slightly weaker statement, namely that regF (x|y) ≤ K if
there is an ε > 0 such that for any (x, y) ∈ B(x̄, ε)×B(ȳ, ε) with y �∈ F (x) there is
a u �= x satisfying

(3) dK((u, y),Graph F ) ≤ dK((x, y),Graph F )− d(u, x).

So let (3) hold with some K > 0 and ε > 0. We have to show that there is a δ > 0
such that the inequality d(x, F−1(y)) ≤ Kd(y, F (x)) holds for all (x, y) satisfying
d(x, x) < δ and d(y, y) < δ. Take such a pair (x, y) with δ ≤ ε/2. By Ekeland’s
principle (applied to f = ωK(·, y)) there is a x̂ such that d(x̂, x) ≤ ωK(x, y) and

(4) ωK(w, y) + d(w, x̂) > ωK(x̂, y) ∀ w �= x̂.

We claim that y ∈ F (x̂). Indeed, otherwise, as dK((x̂, y),Graph F ) < ε , by the
assumption there is a u �= x̂ such that (3) holds with x = x̂, that is, ωK(u, y) ≤
ωK(x̂, y)− d(u, x̂), in contradiction with (4).

Thus y ∈ F (x̂) and therefore

d(x, F−1(y)) ≤ d(x, x̂) ≤ ωK(x, y) ≤ Kd(y, F (x)).

As this is true for all (x, y) satisfying the above specified conditions, we deduce that
regF (x|y) ≤ K.

Now let there be K > 0 and ε > 0 such that (2) holds with some u �= x whenever
(x, y) ∈ B(x, ε) × B(y, ε) and y �∈ F (x). Let dn(x, x

′), n = 2, 3, . . ., stand for the
metric (1 − n−1)d(x, x′) in X, and let regn F be the rate of metric regularity of
F when X is considered with the dn-metric. It is an easy matter to see that
regn F (x|y) → regF (x|y) as n → ∞. If (2) holds with λ = 1− n−1, then by what
we have just proved regn F (x|y) ≤ K for any n, hence regF (x|y) ≤ K. This proves
the first statement.

To prove the second statement, take a rational K > regF (x|y). As F is graph
regular, by Proposition 1 d(x, F−1(y)) ≤ dK((x, y),Graph F ) for all (x, y) of a
neighborhood of (x, y). Take a pair (x, y) in the neighborhood with y �∈ F (x) and
a positive λ < 1 and choose a u ∈ F−1(y) satisfying λd(x, u) ≤ d(x, F−1(y)). Then

dK((u, y),Graph F ) = 0 ≤ dK((x, y),Graph F )− d(x, F−1(y))
≤ dK((x, y),Graph F )− λd(x, u),

which immediately implies the second statement of the theorem as K can be chosen
arbitrarily close to regF (x|y). �

Corollary 3. Set for a K > 0

ϕK(x, y) = sup
u∈X\{x}

(ωK(x, y)− ωK(u, y))+

d(x, u)
.
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Then, under the assumptions of the theorem, regF (x|y) coincides with the infi-
mum of all rational K > 0 such that ϕK(x, y) ≥ 1 for all (x, y), y �∈ F (x) of a
neighborhood of (x, y).

3. Rich families

Let X be a metric space. By S(X) we denote the collection of closed separable
subspaces of X. If Y is another metric space, then S��(X × Y ) is the collection of
sets L×M , where L ∈ S(X) and M ∈ S(Y ).

A family R of elements of S(X) is rich if it has the following two properties:
• R is cofinal, that is, for any C ∈ S(X) there is an S ∈ R containing C;
• R is σ-closed, that is, for any increasing sequence S1, S2, . . . of elements of R

the closure of the union of Sn also belongs to R.
If the space itself is separable, then the family consisting of X alone is rich and

all the statements concerning rich families become trivial. So in what follows we
take for granted that the spaces we work with are nonseparable.

The following simple proposition proved by J. M. Borwein and W. Moors [2]
describes the main property of rich families. We give a proof of the proposition as
it plays a crucial role in subsequent arguments.

Proposition 4. The intersection of countably many rich families of a metric space
X is again a rich family.

Proof. Let R1,R2, . . . be a sequence of rich families in X. It is immediate to check
that the intersection R := R1 ∩ R2 ∩ · · · is σ-closed in S(X). To prove that R is
cofinal, fix any S0 ∈ S(X). We have to show that there is an S ∈

⋂
Rn containing

S0. This can be done, for instance, as follows.
Let Qn1 be an arbitrary element of Rn containing S0, and for k ≥ 2,

Qnk ∈ Rn,
⋃{

Qmj : j < k,m+ j < n+ k
}
⊂ Qnk.

Clearly such sets Qnk can be found, as the union of finitely many elements of S(X)
also is an element of S(X). It is also clear that for any n,m, and k there is an �
such that Qnk ⊂ Qm�. Let Sn stand for the closure of

⋃
k Qnk. Then, as follows

from the observation of the previous sentence, the sets Sn coincide, so we can drop
the subscript and set S = Sn. As Sn ∈ Rn belongs to every Rn, it follows that
S ∈ R. �

Proposition 5. Let X be a nonseparable metric space and let f be an extended-
real-valued function on X. Then there exists a rich family R ⊂ S(X) such that

(5) ∀r > 0 ∀S ∈ R ∀x ∈ S inf f
(
B(x, r)

)
= inf g

(
B(x, r) ∩ S

)
.

Proof. Denote by R the collection of S ∈ S(X) for which (5) holds. We have to
show that this is a rich family. To begin with, we observe that for any x ∈ X and
any set P ⊂ X the function ϕ(r) = inf f(B(x, r) ∩ P ) is (obviously nonincreasing
and) continuous from the left. Indeed, given an ε > 0, take a u ∈ B(x, r) ∩ P
such that f(u) < ϕ(r) + ε. As B(x, r) is an open set, there is a δ > 0 such that
u ∈ B(x, r − δ), and therefore ϕ(r) ≤ ϕ(r − δ) ≤ ϕ(r) + ε, as claimed. It follows
that ϕ is fully defined by its values at positive rational r, and therefore (5) may
every time be verified only for such r.

Let us next associate with any x ∈ X and any r > 0 a countable set D(x, r) ⊂
B(x, r) such that inf f(B(x, r)) = inf f(D(x, r)). We shall first show that R is
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cofinal. Take any countable subset C0 of X and, starting with it, define a sequence
(Cn) of countable subsets of X as follows: if a certain Cn has been already defined,
we define Cn+1 as the union of Cn and all sets D(x, r), with x ∈ Cn and r being a
positive rational. Set finally S = cl(∪Cn).

We have to verify that S ∈ R (which would prove that R is a cofinal family). To
this end we have to check that (5) holds for all x ∈ S. This is obvious if x ∈ Cn for
some n. If on the other hand, x ∈ S \

⋃
Cn, take a sequence of xn ∈ Cn converging

to x and let εn = d(x, xn). Then B(x, r − 2ε) ⊂ B(xn, r − ε) ⊂ B(x, r) if εn < ε.
This together with the inequalities (obvious in view of the choice of the sets D(x, r))

inf f(B(xn, r − ε) ∩D(xn, r − ε)) = inf f(B(xn, r − ε)) ≤ inf f(B(x, r − 2ε))

and
inf f(B(x, r) ∩ S) ≤ inf f(B(xn, r − ε) ∩D(xn, r − ε))

gives inf f(B(x, r) ∩ S) ≤ inf f(B(x, r − 2ε)). The latter immediately implies (5)
in view of the established left continuity of inf f(B(x, ·) and inf f(B(x, ·) ∩ S) and
the obvious inequality inf f(B(x, r) ∩ S) ≥ inf f(B(x, r)).

It remains to verify thatR is σ-closed. To this end we only need, given a sequence
(Sn) of elements of R, to repeat the arguments of the previous paragraph with Cn

and D(xn, r) replaced by Sn. �
Note that no assumptions have been imposed on the function in the above propo-

sition. Therefore the result remains valid if instead of f we consider the restriction
of f to some fixed set Ω ⊂ X. In other words, the following statement is true.

Corollary 6. Let X be a nonseparable metric space, let f be an extended-real-
valued function on X, and let Ω ⊂ X. Then there exists a rich family R ⊂ S(X)
such that

(6) ∀r > 0 ∀S ∈ R ∀x ∈ S inf f
(
B(x, r) ∩ Ω

)
= inf g

(
B(x, r) ∩ Ω ∩ S

)
.

Proposition 7. Let X be a metric space and let Ω ⊂ X be a nonempty set. Then
the collection R of S ∈ S(X) such that

(7) ∀x ∈ S d(x,Ω) = d(x,Ω ∩ S)

is a rich family.

Proof. Given a countable set C0 ⊂ X, we can construct an increasing sequence
C0 ⊂ C1 ⊂ C2 ⊂ · · · of countable subsets of X such that for any n and any u ∈ Cn

(8) d(u,Ω) = d(u,Ω ∩ Cn+1).

Indeed, it immediately follows that S = cl(
⋃
Cn) satisfies (7); hence R is cofinal.

To prove that R is σ-closed, consider a sequence S1 ⊂ S2 ⊂ · · · ⊂ Sn ⊂ · · · of
elements of R and let S = cl(

⋃
Sn). Let Dn be a dense countable subset of Sn

such that Ω ∩Δn is dense in Ω ∩ S. Then d(u,Ω) = d(u,Ω ∩Dn) for any u ∈ Dn.
Finally, let Cn be the union of Dk with k ≤ n. Then obviously S = cl(

⋃
Cn) and

(8) holds for any n and any u ∈ Cn. In other words, S satisfies all conditions
defining elements of R. �

In what follows we denote by S��(X × Y ) the collection of closed rectangular
separable subsets of X × Y :

S��(X × Y ) := S(X)× S(Y ) = {L×M : L ∈ S(X), M ∈ S(Y )}.
It is obvious that S��(X × Y ) is a rich family of elements of S(X × Y ).
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Proposition 8. Let f be a Lipschitzian real-valued function on X×Y and let some
constants s > r > 0 be given. Then the family R of all sets L ×M ∈ S��(X × Y )
such that for any (x, y) ∈ (L×M)

(9)
sup

{ (f(x, y)− f(u, y))+

d(x, u)
: u ∈ X, r < d(x, u) < s

}

= sup
{ (f(x, y)− f(u, y))+

d(x, u)
: u ∈ L, r < d(x, u) < s

}

is rich.

Proof. First consider the case when f does not depend on y. Let C0 be an arbitrary
countable subset of X. Starting with C0, we construct a sequence (Cn) of countable
subsets of X such that C0 ⊂ C1 ⊂ C2 ⊂ · · · , and for any x ∈ Cn,

sup
{ (f(x)− f(u))+

d(x, u)
: u ∈ X, r < d(x, u) < s

}

= sup
{ (f(x)− f(u))+

d(x, u)
: u ∈ Cn+1, r < d(x, u) < s

}
.

To this end, for any x ∈ X we take a countable set D(x) ⊂ X that realizes
the supremum in the left-hand part of the above equality and, assuming that Cn

has been already defined, we define Cn+1 as the union of Cn and all sets D(x)
corresponding to x ∈ Cn.

Further, let L be the closure of the union of all (Cn). Since f is a Lipschitzian
function, for any x,

lim
ε→0

sup
{ (f(x)− f(u))+

d(x, u)
: u ∈ X, r + ε < d(x, u) < s− ε

}

= sup
{ (f(x)− f(u))+

d(x, u)
: u ∈ X, r < d(x, u) < s

}
.

On the other hand, if x ∈ L and a sequence of xn ∈ Cn converges to x, then (as
evenually r < d(xn, u) < s whenever ε > 0 and r + ε < d(x, u) < s− ε)

(10)

sup
{ (f(x)− f(u))+

d(x, u)
: u ∈ X, r + ε < d(x, u) < s− ε

}

≤ lim
n→∞

sup
{ (f(xn)− f(u))+

d(xn, u)
: u ∈ X, r < d(xn, u) < s

}

= lim
n→∞

sup
{ (f(xn)− f(u))+

d(xn, u)
: u ∈ L, r < d(xn, u) < s

}

= sup
{ (f(x)− f(u))+

d(x, u)
: u ∈ L, r < d(x, u) < s

}
.

The fact that R is rich easily follows from these two relations. Indeed, as (10)
holds for any ε > 0, (9) follows. As we can choose any countable subset of X to
be C0, this means that R is cofinal. Further, let (Ln) be an increasing sequence of
elements of R, L = cl(∪Ln) and x ∈ L. If x belongs to some of Ln, (9) obviously
holds. If on the other hand, x ∈ L \ (

⋃
Ln), we get (9) by repeating word for word

but with Ln instead of Cn the arguments that led to (10). Thus L is also σ-closed,
and hence rich.

Let us return to the general case. For any y ∈ Y , we can consider the set RX(y)
of all L ∈ S(X) such that (9) holds for all x ∈ L. As we have just proved, RX(y)
is a rich family. Now let M ∈ S(Y ), and let D be a dense countable subset of M .
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By Proposition 4 the intersection of all RX(y) for y ∈ D is also a rich family in
S(X). However, as f is Lipschitz in y, the equality in (9) actually holds for any
y ∈ M . Thus the collection RX(M) of all L ∈ S(X) such that (9) holds for all
x ∈ L and y ∈ M is a rich family. Finally, let R be the collection of all L × M
such that M ∈ S(Y ) and L ∈ RX(M). We have to show that this is a rich family
in S(X × Y ).

Let Q ∈ S(X × Y ) and let M be the closure of the canonical projections of
Q onto Y . As RX(M) is a rich family, there is an L ∈ RX(M) containing the
projection of Q onto X. Therefore L×M contains Q, and hence R is cofinal. To
prove that R is σ-closed consider an increasing sequence Ln × Mn of elements of
R. Set L = cl(

⋃
Ln), M = cl(

⋃
Mn). To complete the proof, we have to verify

that L × M ∈ R. So let x ∈ L, y ∈ M . If x belongs to some Ln, take yk ∈ Mk

converging to y. If k ≥ n, then x ∈ Lk, and therefore (9) holds for y = yk. Again,
as f is Lipshitzian in y, we deduce that (9) holds for the given x and y. If, on the
other hand, x �∈

⋃
Ln, we take a sequence (xn, yn) ∈ Ln ×Mn converging to (x, y).

If k ≥ n, then yn ∈ Mk and therefore (9) holds with y = yn and any x ∈ Lk. By
definition Lk ∈ RX(Mk), and therefore Lk ∈ RX(Mn) for all k ≥ n. As RX(Mn)
is a rich family, it follows that L ∈ RX(Mn), and therefore again we see that (9)
holds with y replaced by yn for any n and hence also for the y itself. �

4. Main result

Now, we are armed enough to prove our main result. To begin with, we have to
agree on some notation and terminology. Let F : X ⇒ Y be a set-valued mapping
and let Q ⊂ X × Y . We shall denote by FQ the set-valued mapping whose graph
is (Graph F ) ∩Q. For a rectangular Q = L×M with L ⊂ X and M ⊂ Y we shall
write simply FLM (rather than FL×M ). We observe the following obvious fact:

∀(x, y) ∈ L×M (x, y) �∈ Graph F ⇐⇒ (x, y) �∈ Graph FLM .

We shall use the word functor for operations that transform mappings or func-
tions of a certain class to other mappings or functions. Thus the operation regF
that associates with a set-valued mapping F : X ⇒ Y the function X × Y �
(x, y) �−→ regF (x|y) is a functor on the class of set-valued mappings between met-
ric spaces.

Finally we shall say that the functor regF is separably reducible on a certain
class of metric spaces if for any X,Y of the class and any F : X ⇒ Y with closed
graph there is a cofinal family R of separable subsets of X × Y such that for any
Q ∈ R the equality regF (x|y) = regFQ(x|y) holds for any (x, y) ∈ Q.

Theorem 9. The functor F �−→ regF (·|·) is separably reducible on the class of
pairs of metric spaces (X,Y ) with the domain space X being complete. Specifically,
given a complete metric space X, a metric space Y , and a set-valued mapping
F : X ⇒ Y , with closed graph, there exists a rich family R ⊂ S��(X×Y ) such that

∀L×M ∈ R ∀(x, y) ∈ Graph FLM , regF (x|y) = regFLM (x|y).
Proof. In the proof we consider positive rational K, and as before we set for brevity

ωK(x, y) = dK((x, y),Graph F ), (x, y) ∈ X × Y ;
ωK
LM (x, y) = dK((x, y),Graph FLM ), (x, y) ∈ L×M.

As S��(X × Y ) is a rich family, Proposition 7 (jointly with Proposition 4) implies
that for every K > 0 there is a rich family RK

1 ⊂ S��(X × Y ) such that for any
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L×M ∈ RK
1 and any (x, y) ∈ L×M ,

(11) ωK(x, y) = ωK
LM (x, y).

Then R1 :=
⋂ {

RK
1 : K > 0, K rational

}
is also a rich family by Proposition 4.

Furthermore, from Proposition 8 we deduce that for every K > 0 and every

0 < r < s the family RK,r,s
2 consisting of all rectangles L×M ∈ S��(X × Y ) such

that the equality

sup

{
(ωK(x, y)− ωK(u, y))+

d(x, u)
: u ∈ X, r<d(x, u)<s

}

= sup

{
(ωK(x, y)− ωK(u, y))+

d(x, u)
: u ∈ L, r < d(x, u) < s

}

holds for any (x, y) ∈ L×M is rich. Hence by Proposition 4 for every 0 < r < s

the family Rr,s
3 :=

⋂
{RK,r,s

2 : K > 0, K rational
}
is again rich. This allows us to

conclude, taking (11) into account, that

sup

{
(ωK(x, y)− ωK(u, y))+

d(x, u)
: u ∈ X, r<d(x, u)<s

}

= sup

{
(ωK(x, y)− ωK(u, y))+

d(x, u)
: u ∈ L, r < d(x, u) < s

}

= sup

{
(ωK

LM (x, y)− ωK
LM (u, y))+

d(x, u)
: u ∈ L, r < d(x, u) < s

}

for every rational K > 0, every 0 < r < s, every L ×M ∈ Rr,s
3 := R1 ∩ Rr,s

2 , and
every (x, y) ∈ L×M .

Finally, setting R3 :=
⋂ {

Rr,1/r
3 : 0 < r < 1, r rational

}
, we find that this is

also a rich family by Proposition 4, and for every K > 0, every L ×M ∈ R3, and
every (x, y) ∈ L×M ,

(12) sup
u∈X\{x}

(ωK(x, y)− ωK(u, y))+

d(x, u)
= sup

u∈L\{x}

(ωK
LM (x, y)− ωK

LM (u, y))+

d(x, u)
.

Recall that

(13) ϕK(x, y) := sup
u∈X\{x}

(ωK(x, y)− ωK(u, y))+

d(x, u)
, (x, y) ∈ X × Y.

We also set

(14) ϕK
LM (x, y) := sup

u∈L\{x}

(ωK
LM (x, y)− ωK

LM (u, y))+

d(x, u)
, (x, y) ∈ L×M.

Thus (12) looks as follows:

(15) ϕK(x, y) = ϕK
LM (x, y)

for all rational K > 0, all L×M ∈ R3, and all (x, y) ∈ L×M . Applying Corollary
6 with Ω := (X × Y ) \Graph F (and of course X replaced by X × Y ) jointly with
Proposition 4, we find for every K > 0 a rich family RK

4 ⊂ S��(X × Y ) such that
for every L×M ∈ RK

4 , every (x, y) ∈ L×M , and every ε > 0 we have

(16)
inf ϕK

(
B(x, ε)×B(y, ε) \Graph F

)
= inf ϕK

(
(B(x, ε)×B(y, ε) \Graph F

)
∩ (L×M))

= inf ϕK
(
(B(x, ε) ∩ L)× (B(y, ε) ∩M) \Graph FLM

)
.
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Put R4 =
⋂ {

RK
4 : K > 0, K rational

}
. Hence combining (16) with (15), we get

that for every rational K > 0, for every L ×M ∈ R3 ∩ R4, every (x, y) ∈ L×M ,
and every ε > 0 we have

(17)
inf ϕK

(
B(x, ε)×B(y, ε) \Graph F

)
= inf ϕK

LM

(
(B(x, ε) ∩ L)× (B(y, ε) ∩M) \Graph FLM

)
.

The equality (17) together with Corollary 3 immediately gives that

∀ L×M ∈ R3 ∩R4 ∀ (x, y) ∈ L×M, regF (x|y) = regFLM (x|y).

It remains to set R = R3 ∩R4 to complete the proof. �

5. A remark concerning subregularity

Subregularity is a weakened version of the metric regularity property: F : X ⇒ Y
is subregular at (x, y) ∈ Graph F if there are K > 0 and ε > 0 such that

d(x, F−1(y)) ≤ Kd(y, F (x)) ∀ x ∈ B(x, ε).

The infimum of such K’s usually denoted by subregF (x|y) is called the rate or
modulus of metric subregularity of F at (x, y).

Although subregularity lacks some good properties of metric regularity, in certain
important situations it is subregularity that is needed for analysis (see [4, 11]).
Therefore it is natural to ask whether the results of this note can be extended to
the subregularity property and the rate of subregularity.

The answer is positive. Indeed, Proposition 1 remains valid if we fix y = y in
(1) and in the statement of the proposition (see [11, Proposition 2.61]), and on the
other hand, an attentive look at the proofs of both theorems in this paper shows
that the proofs go through without any change if we fix y = y.
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