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LOCALLY CONFORMALLY FLAT MANIFOLDS

WITH CONSTANT SCALAR CURVATURE

HUIYA HE AND HAIZHONG LI

(Communicated by Guofang Wei)

Abstract. Let (Mn, g) be an n-dimensional (n ≥ 4) compact locally confor-
mally flat Riemannian manifold with constant scalar curvature and constant
squared norm of Ricci curvature. Applying the moving frame method, we
prove that such a Riemannian manifold does not exist if its Ricci curvature
tensor has three distinct eigenvalues.

1. Introduction

Let (Mn, g) be a compact locally conformally flat Riemannian manifold. Let
R denote the scalar curvature and let S denote the squared norm of the Ricci
curvature tensor of Mn.

Yamabe, Trudinger, Aubin, and Schoen (see [1], [12], [14], and [17]) proved the
following: any compact Riemannian manifold can be deformed into a Riemannian
manifold with constant scalar curvature by a conformal transformation. In [7], S. I.
Goldberg established that every complete conformally flat Riemannian manifold
Mn with positive constant scalar curvature R is a space form if the squared norm
S of the Ricci curvature tensor of Mn satisfies the inequality

supS <
R2

n− 1
.

We should remark that the condition of R being positive is essential in the proof of
Goldberg’s Theorem. In [13], Schoen and Yau investigated the global properties of
the locally conformally flat Riemannian manifolds by using the Yamabe equation.

There are many results about compact locally conformally flat Riemannian man-
ifolds with constant scalar curvature in the literature. The following theorem is well
known.

Theorem A (cf. Tani [15], Wegner [16], and Cheng [5]). Let (Mn, g) be a compact
locally conformally flat Riemannian manifolds with constant scalar curvature. If
the Ricci tensor is semi-positive definite, then (Mn, g) is either a space form or the
Riemannian product Mn−1

1 (c)×N1, c ≥ 0, where Mn−1
1 is a space form.
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The following problem is interesting:

Problem 1.1. Whether there exists an n-dimensional (n ≥ 3) compact locally
conformally flat Riemannian manifold Mn with the following conditions:

(1) constant scalar curvature,
(2) constant squared norm of the Ricci curvature tensor,
(3) the Ricci curvature tensor has three distinct eigenvalues everywhere.

In [3], Q.-M. Cheng, S. Ishikawa, and K. Shiohama gave an affirmative answer
for Problem 1.1 when n = 3 by proving the following theorem:

Theorem B ([3]). There exists no 3-dimensional compact locally conformally flat
Riemannian manifold if scalar curvature R and squared norm S of the Ricci cur-
vature tensor are constants and the Ricci curvature tensor has three distinct eigen-
values.

Remark 1.2. In fact, in [3], Cheng-Ishikawa-Shiohama also proved that if M3 is a 3-
dimensional complete locally conformally flat Riemannian manifold with constant
nonnegative scalar curvature and constant squared norm of the Ricci curvature
tensor, then M3 is either isometric to a space form or the Riemannian product
M2

1 (c)×N1, c ≥ 0. And in [4], Cheng-Ishikawa-Shiohama proved that there exists
no complete locally conformally flat 3-dimensional Riemannian manifolds with neg-
ative constant scalar curvature R and Ricci curvature tensor with constant squared

norm S satisfying R2

3 + ( 7
113 )

2 · 2R2

3 < S < R2

3 + ( 35
137 )

2 · R2

6 .

In this paper, we give an affirmative answer for Problem 1.1 when n ≥ 4 by
proving the following Main Theorem:

Main Theorem. There exists no n-dimensional (n ≥ 4) compact locally confor-
mally flat Riemannian manifold if scalar curvature R and squared norm S of the
Ricci curvature tensor are constants and the Ricci curvature tensor has three dis-
tinct eigenvalues.

Remark 1.3. We note that Z.Q. Li [11] and S. Chang [2] proved independently that
a compact hypersurface Mn (n ≥ 4) with constant mean curvature H and constant
scalar curvature R in S

n+1 is isoparametric if the hypersurface has three distinct
principal curvatures everywhere.

The organization of the paper is as follows. In section 2, we collects some facts
about locally conformally flat Riemannian manifolds with constant scalar curva-
ture. In section 3, we will prove two key propositions by studying the structure of
compact locally conformally flat manifolds with constant scalar curvature and Ricci
curvature tensor with three distinct eigenvalues. In section 4, we give the proof of
the Main Theorem.

2. Preliminaries

Let (Mn, g) (n ≥ 4) be an n-dimensional Riemannian manifold. We choose a
local orthonormal frame e1, . . . , en adapted to the Riemannian metric of (Mn, g),
with ω1, . . . , ωn as dual coframe. Then the structure equations of Mn are given by

dωi =
∑
j

ωij ∧ ωj , ωij = −ωji,(2.1)

dωij =
∑
k

ωik ∧ ωkj −
1

2

∑
k,l

Rijklωk ∧ ωl,(2.2)
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where ωij is the Levi-Civita connection form and Rijkl are the components of the
Riemannian curvature tensor of (Mn, g). Let Wijkl denote the components of the
Weyl curvature tensor of (Mn, g). We have

Wijkl = Rijkl −
1

n− 2
(Rikgjl −Rilgjk +Rjlgik −Rjkgil)

+
R

(n− 1)(n− 2)
(gikgjl − gilgjk),

where Rij :=
∑

kl Rikjlgkl are components of the Ricci curvature tensor and R :=∑
ij Rijgij is the scalar curvature of Mn. The Schouten tensor Aij is a symmetric

(0,2)-tensor, defined by

Aij =
1

n− 2
(Rij −

R

2(n− 1)
δij).(2.3)

Then, we can express the Riemannian curvature tensor of a locally conformally flat
Riemannian manifold by

Rijkl = Aikδjl −Ailδjk +Ajlδik − Ajkδil.(2.4)

Denote by ∇ the covariant derivation on (Mn, g) and write, e.g., Rij,k = ∇kRij ,
Rij,kl = ∇l∇kRij , Aij,k = ∇kAij , Aij,kl = ∇l∇kAij , and so on.

Since Mn is locally conformally flat and n ≥ 4, it is well-known that Aij is a
Codazzi tensor, that is (see [8]),

Aij,k = Aik,j .(2.5)

For an arbitrary (0, 2)-tensor T we have the following Ricci identities:

Tij,kl − Tij,lk =
∑
m

TmjRmikl +
∑
m

TimRmjkl.(2.6)

If Mn (n ≥ 4) is a locally conformally flat Riemannian manifold with constant
scalar curvature R and constant squared norm S of the Ricci curvature tensor, by
use of (2.4) and (2.6) we have the following well-known calculation (see [3], [8]):

1

2
ΔS =

∑
i,j,k

R2
ij,k +

∑
i,j

RijΔRij(2.7)

=
∑
i,j,k

R2
ij,k +

∑
i,j,k

RijRik,jk

=
∑
i,j,k

R2
ij,k +

∑
i,j,k,m

Rij(Rik,kj +RmkRmijk +RimRmkjk)

=
∑
i,j,k

R2
ij,k +

∑
i,j,k,m

RijRmkRmijk +
∑
i,j,m

RijRimRmj

=
∑
i,j,k

R2
ij,k +

1

n− 2
(n

∑
i,j,k

RijRjkRki −
2n− 1

n− 1
RS +

R3

n− 1
).

Combining (2.7) with (2.3), we have the following proposition, which will be
used in the proof of Proposition 3.1.

Proposition 2.1. Let Mn (n ≥ 4) be an n-dimensional locally conformally flat
Riemannian manifold with constant scalar curvature R and constant squared norm
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S of the Ricci curvature tensor. We have the following formula:

∑
i,j,k

A2
ij,k = − 1

(n− 2)3
(n

∑
i,j,k

RijRjkRki −
2n− 1

n− 1
RS +

R3

n− 1
).(2.8)

3. Two key propositions and their proofs

In this section, we will prove two key propositions by studying the structure of
compact locally conformally flat manifolds with constant scalar curvature and Ricci
curvature tensor with three distinct eigenvalues.

Proposition 3.1. Let Mn (n ≥ 4) be a compact locally conformally flat Riemann-
ian manifold with constant scalar curvature R and constant squared norm S of
the Ricci curvature tensor. If the Ricci curvature tensor of Mn has three distinct
eigenvalues everywhere, then all eigenvalue functions are constants on Mn.

In order to prove Proposition 3.1, we first prove the following lemma.

Lemma 3.2. Let Mn (n ≥ 4) be a compact locally conformally flat Riemannian
manifold with constant scalar curvature R and constant squared norm S of the Ricci
curvature tensor. For each point x ∈ Mn, let λ(x), μ(x), and ν(x) be the three
distinct eigenvalues of Aij of multiplicities m1(x),m2(x), and m3(x), respectively.
Then m1,m2, and m3 are constants.

Proof. From (2.3), we have the following system of linear equations of m1,m2,m3:

m1 +m2 +m3 = n,(3.1)

m1λ+m2μ+m3ν =
R

2(n− 1)
,(3.2)

m1λ
2 +m2μ

2 +m3ν
2 =

1

(n− 2)2
(S +

4− 3n

4(n− 1)2
R2).(3.3)

Since m1,m2, and m3 are all integers, from the fact that λ, μ, and ν are distinct
continuous functions on Mn and R,S are constants, we have that m1,m2, and m3

are constants. �

We shall make use of the following convention on the ranges of indices:

1 ≤ i, j, k, . . . ≤ n; 1 ≤ a, b, c, . . . ≤ m1;

m1 + 1 ≤ α, β, γ, . . . ≤ m1 +m2; m1 +m2 + 1 ≤ r, s, t, . . . ≤ m1 +m2 +m3.

Then Aij can be expressed as follows:

(Aij)n×n =

⎛
⎝

λ(δab)m1×m1

μ(δαβ)m2×m2

ν(δrs)m3×m3

⎞
⎠

n×n.

By a direct calculation, we have the following covariant derivation of Aij (see
[6]):

∑
k

Aab,kωk = dAab +
∑
k

Akbωka +
∑
k

Aakωkb(3.4)

= d(λδab) +Abbωba +Aaaωab

= δabdλ
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and ∑
k

Aaβ,kωk = dAaβ +
∑
k

Akβωka +
∑
k

Aakωkβ(3.5)

= Aββωβa +Aaaωaβ

= (λ− μ)ωaβ.

Similarly, we get ∑
k

Aαβ,kωk = δαβdμ,(3.6)

∑
k

Ars,kωk = δrsdν,(3.7)

∑
k

Aar,kωk = (λ− ν)ωar,(3.8)

∑
k

Aαr,kωk = (μ− ν)ωαr.(3.9)

Define

f =
∑
i,j,k

RijRjkRki.(3.10)

Then by using (2.3), we have

(3.11) f = (n− 2)3(m1λ
3 +m2μ

3 +m3ν
3) +

3RS

2(n− 1)
− (5n− 6)R3

8(n− 1)3
.

Differentiating (3.2), (3.3), and (3.11), and using R = constant, S = constant,
we have

m1dλ+m2dμ+m3dν = 0,(3.12)

m1λdλ+m2μdμ+m3νdν = 0,(3.13)

m1λ
2dλ+m2μ

2dμ+m3ν
2dν =

1

3(n− 2)3
df.(3.14)

It follows that

m1dλ

ν − μ
=

m2dμ

λ− ν
=

m3dν

μ− λ
=

df

3(n− 2)3D
,(3.15)

where D = (ν − μ)(ν − λ)(μ− λ).
To finish our proof, we now present three lemmas in different cases of m1,m2,

and m3.
First of all, we consider the case of m1 ≥ 2, m2 ≥ 2, and m3 ≥ 2.

Lemma 3.3. With the same notation as above, if m1 ≥ 2, m2 ≥ 2, and m3 ≥ 2,
then all eigenvalue functions of the Ricci curvature tensor are constants on Mn.

Proof. Since m1 ≥ 2 and A is a codazzi tensor, for an arbitrary d, we can choose
c �= d such that

Acc,d = Acd,c.(3.16)

On the one hand, from (3.4), let a = b = c , and let ed act on both sides of the
equation. Then we have

Acc,d = λ,d.(3.17)
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On the other hand, let a = c, b = d in (3.4). Since c �= d, δcd = 0, we get

Acd,c = 0.(3.18)

Combining (3.16), (3.17), and (3.18), we have λ,d = 0, ∀d. For the same reason, we
obtain μ,β = 0 and ν,r = 0, ∀β, r.

From (3.15) we have

dμ =
m1(λ− ν)

m2(μ− ν)
dλ, dν =

m1(λ− μ)

m3(μ− ν)
dλ.

Since λ,d = 0 and μ �= ν, we have λ,d = μ,d = ν,d = 0, ∀d.
Similarly, we have λ,β = μ,β = ν,β = 0, ∀β, and λ,r = μ,r = ν,r = 0, ∀r. That is,

λ, μ, and ν are constants. Hence we complete the proof of Lemma 3.3. �

Next, we consider the case of m1 = m3 = 1 and m2 ≥ 2.

Lemma 3.4. With the same notation as above, if m1 = m3 = 1 and m2 ≥ 2, then
A1α,n = 0, ∀α.

Proof. Since m2 ≥ 2, by making use of a method similar to the proof of Lemma
3.3, we have μ,α = 0, ∀α.

Since m1 = m3 = 1 , from (3.15) we have dλ = m2
μ−ν
ν−λdμ and dν = m2

μ−λ
λ−ν dμ.

Then we get

λ,α = μ,α = ν,α = 0, ∀α.(3.19)

From (3.4), (3.6), and (3.7), we have

A11,k = λ,k, Aαα,k = μ,k, Ann,k = ν,k, ∀α, k,(3.20)

Aαβ,k = 0, ∀α �= β.(3.21)

From (3.5), (3.8), and (3.9) and by use of (3.19), (3.20), and (3.21) we get

ω1α =
1

λ− μ

∑
k

A1α,kωk(3.22)

=
1

λ− μ
[A1α,1ω1 +

∑
β �=α

A1α,βωβ +A1α,αωα +A1α,nωn]

=
1

λ− μ
(A1α,nωn + μ,1ωα),

ω1n =
1

λ− ν

∑
k

A1n,kωk(3.23)

=
1

λ− ν
[A1n,1ω1 +

∑
β

A1n,βωβ +A1n,nωn]

=
1

λ− ν
[λ,nω1 +

∑
β

A1n,βωβ + ν,1ωn],

and

ωαn =
1

μ− ν
(A1α,nω1 + μ,nωα).(3.24)
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Differentiating both sides of (3.24), on the one hand, we have

dωαn = ωα1 ∧ ω1n +
∑
β

ωαβ ∧ ωβn + ωαn ∧ ωnn − 1

2

∑
k,l

Rαnklωk ∧ ωl

= ωα1 ∧ ω1n +
∑
β

ωαβ ∧ ωβn

−1

2

∑
k,l

(Aαkδnl −Aαlδnk +Anlδαk −Ankδαl)ωk ∧ ωl

= ωα1 ∧ ω1n +
∑
β

ωαβ ∧ ωβn − (μ+ ν)ωα ∧ ωn

= − 1

λ− μ
(A1α,nωn + μ,1ωα) ∧

1

λ− ν
(λ,nω1 +

∑
β

A1n,βωβ + ν,1ωn)

+
∑
β

ωαβ ∧ [
1

μ− ν
(A1β,nω1 + μ,nωβ)]− (μ+ ν)ωα ∧ ωn.

On the other hand, we get

d[
1

μ− ν
(A1α,nω1 + μ,nωα)]

= (d
1

μ− ν
) ∧ (A1α,nω1 + μ,nωα)

+
1

μ− ν
(dA1α,n ∧ ω1 +A1α,ndω1 + dμ,n ∧ ωα + μ,ndωα)

= (d
1

μ− ν
) ∧ (A1α,nω1 + μ,nωα)

+
1

μ− ν
[dA1α,n ∧ ω1 +A1α,n(

∑
β

ω1β ∧ ωβ + ω1n ∧ ωn)

+dμ,n ∧ ωα + μ,n(ωα1 ∧ ω1 +
∑
β

ωαβ ∧ ωβ + ωαn ∧ ωn)].

Then we can get the equation of terms with type of ωβ ∧ ωn:

− 1

(λ− μ)(λ− ν)
(μ,1ωα ∧ ν,1ωn +

∑
β

A1α,nωn ∧A1β,nωβ)− (μ+ ν)ωα ∧ ωn

= −μ,n − ν,n
(μ− ν)2

ωn ∧ μ,nωα +
1

μ− ν
[A1α,n

∑
β

(
A1β,n

λ− μ
ωn ∧ ωβ +

A1β,n

λ− ν
ωβ ∧ ωn)

+(μ,nnωn ∧ ωα +
μ,n

μ− ν
ωα ∧ ωn)].

That is, ∀α, β,

− μ,1ν,1
(λ− μ)(λ− ν)

δαβ +
A1α,nA1β,n

(λ− μ)(λ− ν)
− (μ+ ν)δαβ

=
μ,n(μ,n − ν,n)

(μ− ν)2
δαβ − A1α,nA1β,n

(λ− μ)(λ− ν)
− μ,nn

μ− ν
δαβ +

μ,n

(μ− ν)2
δαβ .

Hence

2A1α,nA1β,n = Eδαβ,(3.25)
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where E is a smooth function on Mn defined as

E = (μ+ ν)(λ− μ)(λ− ν) + μ,1ν,1 +
μ,n(μ,n − ν,n)

(μ− ν)2
(λ− μ)(λ− ν)

− μ,nn

μ− ν
(λ− μ)(λ− ν) +

μ,n

(μ− ν)2
(λ− μ)(λ− ν).

From (3.25) we have ∀α, β,

A1α,nA1β,n = 0, α �= β,(3.26)

A2
1α,n = A2

1β,n =
E

2
.(3.27)

For any fixed α, choose β �= α, from (3.26), if A1α,n = 0, we finish our proof; if
A1α,n �= 0, from (3.26), we have A1β,n = 0, then from (3.27) we get a contradiction.
This completes the proof of Lemma 3.4. �

Now, we consider the case of m3 = 1 and m1 ≥ 2, m2 ≥ 2.

Lemma 3.5. With the same notation as above, if m3 = 1 and m1 ≥ 2, m2 ≥ 2,
then Abα,n = 0, ∀b, α.

Proof. Similarly to Lemma 3.4, since m1 ≥ 2,m2 ≥ 2, we have

λ,α = μ,α = ν,α = 0, ∀α,
λ,b = μ,b = ν,b = 0, ∀b.

And from (3.4)-(3.9), we get

ωbα =
1

λ− μ
Abα,nωn,(3.28)

ωbn =
1

λ− ν
(λ,nωb +

∑
β

Abβ,nωβ),(3.29)

ωαn =
1

μ− ν
(
∑
c

Acα,nωc + μ,nωα).(3.30)

By differentiating (3.28), on the one hand, we have

dωbα =
∑
c

ωbc ∧ ωcα +
∑
β

ωbβ ∧ ωβα + ωbn ∧ ωnα − (λ+ μ)ωb ∧ ωα

=
∑
c

ωbc ∧
1

λ− μ
Acα,nωn +

∑
β

1

λ− μ
Abβ,nωn ∧ ωβα

− 1

λ− ν
(λ,nωb +

∑
β

Abβ,nωβ) ∧
1

μ− ν
(μ,nωα +

∑
c

Acα,nωc)

−(λ+ μ)ωb ∧ ωα.
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On the other hand, we get

d[
1

λ− μ
Abα,nωn]

= (d
1

λ− μ
) ∧ Abα,nωn +

1

λ− μ
[dAbα,n ∧ ωn

+Abα,n(
∑
c

ωnc ∧ ωc +
∑
β

ωnβ ∧ ωβ)]

= (d
1

λ− μ
) ∧ Abα,nωn +

1

λ− μ
dAbα,n ∧ ωn

+
Abα,n

λ− μ
(− 1

λ− ν

∑
c,β

Acβ,nωβ ∧ ωc −
1

μ− ν

∑
c,β

Acβ,nωc ∧ ωβ)

= (d
1

λ− μ
) ∧ Abα,nωn +

1

λ− μ
dAbα,n ∧ ωn −

∑
c,β

Abα,nAcβ,n

(λ− ν)(μ− ν)
ωc ∧ ωβ .

Then we can get the equation of terms with type ωc ∧ ωβ :

− 1

(λ− ν)(μ− ν)
(λ,nωb ∧ μ,nωα +

∑
c,β

Abβ,nωβ ∧ Acα,nωc)− (λ+ μ)ωb ∧ ωα

= −
∑
c,β

Abα,nAcβ,n

(λ− ν)(μ− ν)
ωc ∧ ωβ .

That is, ∀α, β, b, c,

− λ,nμ,n

(λ− ν)(μ− ν)
δbcδαβ +

Acα,nAbβ,n

(λ− ν)(μ− ν)
− (λ+ μ)δbcδαβ

= − Abα,nAcβ,n

(λ− ν)(μ− ν)
.

Then

Abα,nAcβ,n +Acα,nAbβ,n = Ēδbcδαβ , ∀ b, c, α, β,(3.31)

where Ē = λ,nμ,n + (λ + μ)(λ − ν)(μ − ν). From (3.31), letting c = b, we have
∀b, α, β,

Abα,nAbβ,n = 0, α �= β,(3.32)

A2
bα,n = A2

bβ,n =
Ē

2
.(3.33)

For any fixed b, α, choose β �= α. From (3.32), if Abα,n = 0, we finish our proof; if
Abα,n �= 0, from (3.32) we have Abβ,n = 0. Then from (3.33) we get a contradiction.
This completes the proof of Lemma 3.5. �

Proof of Proposition 3.1. Let Mn (n ≥ 4) be a compact locally conformally flat
Riemannian manifold with constant scalar curvature R and constant squared norm
S of the Ricci curvature tensor.

In the case when m1,m2,m3 ≥ 2, we can immediately finish our proof from
Lemma 3.3.

Because of n ≥ 4, we now suppose otherwise that m3 = 1 and m1 ·m2 ≥ 2.
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Consider a point p0 ∈ Mn such that f(p0) = inf f, where f is defined by (3.10).
Then df(p0) = 0. We have

dλ =
df

3m1(n− 2)3(ν − λ)(μ− λ)
,

dμ =
df

3m2(n− 2)3(ν − μ)(λ− μ)
,

dν =
df

3m3(n− 2)3(μ− ν)(λ− ν)
.

Since λ, μ, and ν are distinct at p0, we get

dλ(p0) = dμ(p0) = dν(p0) = 0.

Then from (3.4), (3.6), and (3.7), we get

Aab,k(p0) = Aαβ,k(p0) = Ars,k(p0) = 0, ∀a, b, α, β, r, s, k.

From Lemmas 3.4 and 3.5, we know that Aaβ,n = 0, and then by using (2.8) and
(3.10), we have

0 =
∑
i,j,k

A2
ij,k(p0) = − 1

(n− 2)3
(nf − 2n− 1

n− 1
RS +

R3

n− 1
)(p0).

It follows that inf f = 1
n (

2n−1
n−1 RS − R3

n−1 ) is constant. Similarly, we can have

sup f = 1
n (

2n−1
n−1 RS− R3

n−1 ) = inf f, which together prove that f is a constant. This
in turn would yield that λ, μ, and ν are constants. This completes the proof of
Proposition 3.1. �

To complete the proof of our Main Theorem, now we only need the following
proposition for locally conformally flat Riemannian manifolds with constant eigen-
values of the Schouten tensor.

Proposition 3.6. Let Mn be a locally conformally flat Riemannian manifold. If
all eigenvalue functions of the Schouten tensor are constants with constant multi-
plicities on Mn, then Mn must be one of the following three cases:

(1) The Schouten tensor has only one eigenvalue. Mn is isometric to Mn(c).
(2) The Schouten tensor has two eigenvalues, and the simplicity of one of

the two eigenvalues is one. Mn is isometric to the Riemannian product
Mn−1

1 (c0)×N1.
(3) The Schouten tensor has two eigenvalues, and the simplicities of both eigen-

values are at least two. Mn is isometric to the Riemannian product Mk
1 (c1)×

Mn−k
2 (c2), where 2 ≤ k ≤ n− 2 and c1 + c2 = 0.

Proof. Suppose there are g distinct eigenvalues of the Schouten tensor on Mn. We
make the following convention on the range of indices:

1 ≤ i, j, k, . . . ≤ n,

1 ≤ ζ, η, θ, . . . ≤ g.

Let Aij = aiδij , ai = constant. From the theorem due to H. Li (see the theorem on
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p. 47 in [10]), we have the following generalized Cartan identities for any fixed i:

∑
j /∈[i]

Rijij

ai − aj
= 0,(3.34)

where [i] = {j| ai = aj} and Rijij is the sectional curvature of the plane spanned
by ei and ej on Mn.

By a direct calculation, from (2.4), for i �= j we have

Rijij = ai + aj .

Let mζ denote the multiplicity of aζ . Then for any fixed ζ we get

0 =
∑
j /∈[ζ]

Rζjζj

aζ − aj
=

∑
θ �=ζ

mθ
aζ + aθ
aζ − aθ

=
∑
θ �=ζ

mθ

a2ζ − a2θ
(aζ − aθ)2

.(3.35)

In (3.35), choose ζ such that a2ζ = maxθ{a2θ}. Then for ∀θ �= ζ,

a2ζ = a2θ,

that is, aζ = aθ or aζ = −aθ. Then there exist at most two distinct eigenvalues of
Aij . This completes the proof of Proposition 3.6. �

Remark 3.7. When n ≤ 8, Proposition 3.6 was proved in [9] by the use of different
methods.

4. Proof of Main Theorem

From Proposition 3.6, we can easily get the result that ifMn (n ≥ 4) is a compact
locally conformally flat Riemannian manifold and eigenvalues of its Ricci curvature
tensor are constants, then there exist at most two distinct eigenvalues of the Ricci
curvature tensor.

Combining with Proposition 3.1, it follows that there exists no compact locally
conformally flat Riemannian manifold Mn (n ≥ 4) with constant scalar curvature
R and constant squared norm S of the Ricci curvature tensor such that the Ricci
curvature tensor on Mn has three distinct eigenvalues everywhere. Therefore, we
complete the proof of the Main Theorem.
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