Locally conformally flat manifolds with constant scalar curvature
HTML articles powered by AMS MathViewer
- by Huiya He and Haizhong Li
- Proc. Amer. Math. Soc. 146 (2018), 5367-5378
- DOI: https://doi.org/10.1090/proc/14148
- Published electronically: September 17, 2018
- PDF | Request permission
Abstract:
Let $(M^n,g)$ be an $n$-dimensional $(n\geq 4)$ compact locally conformally flat Riemannian manifold with constant scalar curvature and constant squared norm of Ricci curvature. Applying the moving frame method, we prove that such a Riemannian manifold does not exist if its Ricci curvature tensor has three distinct eigenvalues.References
- Thierry Aubin, Nonlinear analysis on manifolds. Monge-Ampère equations, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 252, Springer-Verlag, New York, 1982. MR 681859, DOI 10.1007/978-1-4612-5734-9
- Shaoping Chang, On closed hypersurfaces of constant scalar curvatures and mean curvatures in $S^{n+1}$, Pacific J. Math. 165 (1994), no. 1, 67–76. MR 1285564, DOI 10.2140/pjm.1994.165.67
- Qing-Ming Cheng, Susumu Ishikawa, and Katsuhiro Shiohama, Conformally flat $3$-manifolds with constant scalar curvature, J. Math. Soc. Japan 51 (1999), no. 1, 209–226. MR 1661052, DOI 10.2969/jmsj/05110209
- Qing-Ming Cheng, Susumu Ishikawa, and Katsuhiro Shiohama, Conformally flat 3-manifolds with constant scalar curvature. II, Japan. J. Math. (N.S.) 27 (2001), no. 2, 387–404. MR 1873413, DOI 10.4099/math1924.27.387
- Qing-Ming Cheng, Compact locally conformally flat Riemannian manifolds, Bull. London Math. Soc. 33 (2001), no. 4, 459–465. MR 1832558, DOI 10.1017/S0024609301008074
- Shiu Yuen Cheng and Shing Tung Yau, Hypersurfaces with constant scalar curvature, Math. Ann. 225 (1977), no. 3, 195–204. MR 431043, DOI 10.1007/BF01425237
- S. I. Goldberg, An application of Yau’s maximum principle to conformally flat spaces, Proc. Amer. Math. Soc. 79 (1980), no. 2, 268–270. MR 565352, DOI 10.1090/S0002-9939-1980-0565352-8
- Zejun Hu, Haizhong Li, and Udo Simon, Schouten curvature functions on locally conformally flat Riemannian manifolds, J. Geom. 88 (2008), no. 1-2, 75–100. MR 2398477, DOI 10.1007/s00022-007-1958-z
- S. Ivanov, I. Petrova, Locally conformal flat Riemannian manifolds with constant principal Ricci curvatures and locally conformal flat C-spaces, arXiv:dg-ga/9702009v1.
- Haizhong Li, Generalized Cartan identities on isoparametric manifolds, Ann. Global Anal. Geom. 15 (1997), no. 1, 45–50. MR 1443271, DOI 10.1023/A:1006528906547
- Zhen Qi Li, Hypersurfaces, in a sphere, with three principal curvatures, J. Hangzhou Univ. Natur. Sci. Ed. 13 (1986), no. 3, 289–295 (Chinese, with English summary). MR 865714
- Richard Schoen, Conformal deformation of a Riemannian metric to constant scalar curvature, J. Differential Geom. 20 (1984), no. 2, 479–495. MR 788292
- R. Schoen and S.-T. Yau, Conformally flat manifolds, Kleinian groups and scalar curvature, Invent. Math. 92 (1988), no. 1, 47–71. MR 931204, DOI 10.1007/BF01393992
- Neil S. Trudinger, Remarks concerning the conformal deformation of Riemannian structures on compact manifolds, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 22 (1968), 265–274. MR 240748
- Mariko Tani, On a conformally flat Riemannian space with positive Ricci curvature, Tohoku Math. J. (2) 19 (1967), 227–231. MR 220213, DOI 10.2748/tmj/1178243319
- Bernd Wegner, Kennzeichnungen von Räumen konstanter Krümmung unter lokal konform euklidischen Riemannschen Mannigfaltigkeiten, Geometriae Dedicata 2 (1973), 269–281 (German). MR 331278, DOI 10.1007/BF00181473
- Hidehiko Yamabe, On a deformation of Riemannian structures on compact manifolds, Osaka Math. J. 12 (1960), 21–37. MR 125546
Bibliographic Information
- Huiya He
- Affiliation: Department of Mathematical Sciences, Tsinghua University, Beijing 100084, People’s Republic of China
- Email: hhy15@mails.tsinghua.edu.cn
- Haizhong Li
- Affiliation: Department of Mathematical Sciences, Tsinghua University, Beijing 100084, People’s Republic of China
- MR Author ID: 255846
- Email: hli@math.tsinghua.edu.cn
- Received by editor(s): December 18, 2017
- Published electronically: September 17, 2018
- Additional Notes: The authors were supported by grant NSFC-11671224
- Communicated by: Guofang Wei
- © Copyright 2018 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 146 (2018), 5367-5378
- MSC (2010): Primary 53C20, 53C21
- DOI: https://doi.org/10.1090/proc/14148
- MathSciNet review: 3866875