Generating function for the Bannai-Ito polynomials
HTML articles powered by AMS MathViewer
- by Geoffroy Bergeron, Luc Vinet and Satoshi Tsujimoto
- Proc. Amer. Math. Soc. 146 (2018), 5077-5090
- DOI: https://doi.org/10.1090/proc/14158
- Published electronically: September 10, 2018
- PDF | Request permission
Abstract:
A generating function for the Bannai-Ito polynomials is derived using the fact that these polynomials are known to be essentially the Racah or $6j$ coefficients of the $\mathfrak {osp}(1|2)$ Lie superalgebra. The derivation is carried in a realization of the recoupling problem in terms of three Dunkl oscillators.References
- Eiichi Bannai and Tatsuro Ito, Algebraic combinatorics. I, The Benjamin/Cummings Publishing Co., Inc., Menlo Park, CA, 1984. Association schemes. MR 882540
- Geoffroy Bergeron and Vinet Luc, Generating functions for the $\mathfrak {osp}(1|2)$ Clebsch-Gordan coefficients, J. Phys. A 49 (2016), no. 11, 115202, 28. MR 3462338, DOI 10.1088/1751-8113/49/11/115202
- Vincent X. Genest and Luc Vinet, The generic superintegrable system on the 3-sphere and the $9j$ symbols of $\mathfrak {su}(1,1)$, SIGMA Symmetry Integrability Geom. Methods Appl. 10 (2014), Paper 108, 28. MR 3298992, DOI 10.3842/SIGMA.2014.108
- Vincent X. Genest, Luc Vinet, and Alexei Zhedanov, A Laplace-Dunkl equation on $S^2$ and the Bannai-Ito algebra, Comm. Math. Phys. 336 (2015), no. 1, 243–259. MR 3322373, DOI 10.1007/s00220-014-2241-4
- Vincent X. Genest, Luc Vinet, and Alexei Zhedanov, The Bannai-Ito polynomials as Racah coefficients of the $sl_{-1}(2)$ algebra, Proc. Amer. Math. Soc. 142 (2014), no. 5, 1545–1560. MR 3168462, DOI 10.1090/S0002-9939-2014-11970-8
- Vincent X. Genest, Luc Vinet, and Alexei Zhedanov, The Bannai-Ito algebra and a superintegrable system with reflections on the two-sphere, J. Phys. A 47 (2014), no. 20, 205202, 13. MR 3200527, DOI 10.1088/1751-8113/47/20/205202
- Vincent X. Genest, Luc Vinet, and Alexei Zhedanov, The Dunkl oscillator in three dimensions, Journal of Physics: Conference Series 512 (2014), no. 1, 012010 (en).
- Ya. I. Granovskiĭ and A. S. Zhednov, New construction of $3nj$-symbols, J. Phys. A 26 (1993), no. 17, 4339–4344. MR 1237552, DOI 10.1088/0305-4470/26/17/039
- H. T. Koelink and J. Van Der Jeugt, Convolutions for orthogonal polynomials from Lie and quantum algebra representations, SIAM J. Math. Anal. 29 (1998), no. 3, 794–822. MR 1617724, DOI 10.1137/S003614109630673X
- Satoshi Tsujimoto, Luc Vinet, and Alexei Zhedanov, From $sl_q(2)$ to a parabosonic Hopf algebra, SIGMA Symmetry Integrability Geom. Methods Appl. 7 (2011), Paper 093, 13. MR 2861183, DOI 10.3842/SIGMA.2011.093
- Satoshi Tsujimoto, Luc Vinet, and Alexei Zhedanov, Dunkl shift operators and Bannai-Ito polynomials, Adv. Math. 229 (2012), no. 4, 2123–2158. MR 2880217, DOI 10.1016/j.aim.2011.12.020
- J. Van der Jeugt, Coupling coefficients for Lie algebra representations and addition formulas for special functions, J. Math. Phys. 38 (1997), no. 5, 2728–2740. MR 1447890, DOI 10.1063/1.531984
- J. Van der Jeugt and R. Jagannathan, Realizations of $\textrm {su}(1,1)$ and $U_q(\textrm {su}(1,1))$ and generating functions for orthogonal polynomials, J. Math. Phys. 39 (1998), no. 9, 5062–5078. MR 1643334, DOI 10.1063/1.532509
- Luc Vinet and Alexei Zhedanov, A ‘missing’ family of classical orthogonal polynomials, J. Phys. A 44 (2011), no. 8, 085201, 16. MR 2770369, DOI 10.1088/1751-8113/44/8/085201
Bibliographic Information
- Geoffroy Bergeron
- Affiliation: Centre de recherches mathématiques, Université de Montréal, P.O. Box 6128, Centre-ville Station, Montréal, H3C 3J7 Canada
- MR Author ID: 1151339
- Email: bergerog@crm.umontreal.ca
- Luc Vinet
- Affiliation: Centre de recherches mathématiques, Université de Montréal, P.O. Box 6128, Centre-ville Station, Montréal, H3C 3J7 Canada
- MR Author ID: 178665
- ORCID: 0000-0001-6211-7907
- Satoshi Tsujimoto
- Affiliation: Department of Applied Mathematics and Physics, Graduate School of Informatics, Kyoto University, Kyoto, 606-8501, Japan
- MR Author ID: 339527
- Received by editor(s): January 18, 2018
- Received by editor(s) in revised form: March 12, 2018
- Published electronically: September 10, 2018
- Additional Notes: The research of the first author was supported by scholarships of the Natural Science and Engineering Research Council of Canada (NSERC) and of the Fond de Recherche du Québec - Nature et Technologies (FRQNT). The research of the second author was supported in part by a Discovery Grant from NSERC
- Communicated by: Mourad Ismail
- © Copyright 2018 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 146 (2018), 5077-5090
- MSC (2010): Primary 20C35, 33C45, 81R05
- DOI: https://doi.org/10.1090/proc/14158
- MathSciNet review: 3866847