TENSOR PRODUCTS AND SUMS OF p-HARMONIC FUNCTIONS, QUASIMINIMIZERS AND p-ADMISSIBLE WEIGHTS

ANDERS BJÖRN AND JANA BJÖRN

(Communicated by Jeremy Tyson)

Abstract

The tensor product of two p-harmonic functions is in general not p-harmonic, but we show that it is a quasiminimizer. More generally, we show that the tensor product of two quasiminimizers is a quasiminimizer. Similar results are also obtained for quasisuperminimizers and for tensor sums. This is done in weighted \mathbf{R}^{n} with p-admissible weights. It is also shown that the tensor product of two p-admissible measures is p-admissible. This last result is generalized to metric spaces.

1. Introduction

It is well known (and easy to prove) that the tensor product and tensor sum of two harmonic functions are harmonic, i.e., if u_{j} is harmonic in $\Omega_{j} \subset \mathbf{R}^{n_{j}}, j=1,2$, then $u_{1} \otimes u_{2}$ and $u_{1} \oplus u_{2}$ are harmonic in $\Omega_{1} \times \Omega_{2} \subset \mathbf{R}^{n_{1}+n_{2}}$. Here

$$
\left(u_{1} \otimes u_{2}\right)(x, y):=u_{1}(x) u_{2}(y) \quad \text { and } \quad\left(u_{1} \oplus u_{2}\right)(x, y):=u_{1}(x)+u_{2}(y) .
$$

It is also well known that the corresponding property for p-harmonic functions fails. However, as we show in this note, the tensor product of two p-harmonic functions is a quasiminimizer.

Here $u \in W_{\text {loc }}^{1, p}(\Omega)$ is p-harmonic in the open set $\Omega \subset \mathbf{R}^{n}$ if it is a continuous weak solution of the p-Laplace equation

$$
\Delta_{p} u:=\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)=0, \quad 1<p<\infty .
$$

Moreover, $u \in W_{\text {loc }}^{1, p}(\Omega)$ is a Q-quasiminimizer if

$$
\int_{\varphi \neq 0}|\nabla u|^{p} d x \leq Q \int_{\varphi \neq 0}|\nabla(u+\varphi)|^{p} d x
$$

for all boundedly supported Lipschitz functions φ vanishing outside Ω. A quasiminimizer always has a continuous representative, and if $Q=1$ this representative is a p-harmonic function.

In this note we show the following result.

[^0]Theorem 1. Let $1<p<\infty$, and let u_{j} be a Q_{j}-quasiminimizer in $\Omega_{j} \subset \mathbf{R}^{n_{j}}$ with respect to a p-admissible weight $w_{j}, j=1,2$. Then $u=u_{1} \otimes u_{2}$ and $v=u_{1} \oplus u_{2}$ are Q-quasiminimizers in $\Omega_{1} \times \Omega_{2}$ with respect to the p-admissible weight $w=w_{1} \otimes w_{2}$, where

$$
Q= \begin{cases}\left(Q_{1}^{2 /|p-2|}+Q_{2}^{2 /|p-2|}\right)^{|p-2| / 2} & \text { if } p \neq 2, \tag{1}\\ \max \left\{Q_{1}, Q_{2}\right\} & \text { if } p=2 .\end{cases}
$$

In particular, if u_{1} and u_{2} are p-harmonic, then u and v are Q-quasiminimizers with $Q=2^{|p-2| / 2}$.

We also obtain a corresponding result for quasisuperminimizers. We pursue our studies on weighted \mathbf{R}^{n} with respect to so-called p-admissible weights. To do so, we first show in Section 2 that the product of two p-admissible measures is p-admissible. This generalizes some earlier special cases from Lu-Wheeden [15, Lemma 2], ChuaWheeden [7, Theorem 3.1], Kilpeläinen-Koskela-Masaoka [13, Lemma 2.2], and Björn [4, Lemma 11], but we have not seen it proved in this form in the literature. In fact, our result holds in the generality of metric spaces, see Remark 4 .

Usually, $Q \geq 1$ in the definition of Q-quasiminimizers but here it is convenient to also allow for $Q=0$ (which happens exactly when u is a.e. constant in every component of Ω). For example, if $Q_{2}=0$, then $Q=Q_{1}$ in Theorem 1. Even this special case of Theorem 1 seems to have gone unnoticed in the literature.

Quasiminimizers were introduced by Giaquinta and Giusti [8, [9] in the early 1980s as a tool for a unified treatment of variational integrals, elliptic equations, and quasiregular mappings on \mathbf{R}^{n}. In those papers, De Giorgi's method was extended to quasiminimizers, yielding in particular their local Hölder continuity. Quasiminimizers have since then been studied in a large number of papers, first on unweighted \mathbf{R}^{n} and later on metric spaces; see Appendix C in Björn-Björn [3] and the introduction in Björn [5 for further discussion and references.

Quasiminimizers form a much more flexible class than p-harmonic functions. For example, Martio-Sbordone [16] showed that quasiminimizers have an interesting and nontrivial theory also in one dimension, and Kinnunen-Martio [14] developed an interesting nonlinear potential theory for quasiminimizers, including quasisuperharmonic functions. Unlike p-harmonic functions and solutions of elliptic PDEs, quasiminimizers can have singularities of any order, as shown in Björn-Björn [2].

2. Tensor products of p-Admissible measures

Let w be a weight function on \mathbf{R}^{n}, i.e., a nonnegative locally integrable function, and let $d \mu=w d x$. In this section we also let $1 \leq p<\infty$ be fixed. For a ball $B=B\left(x_{0}, r\right):=\left\{x:\left|x-x_{0}\right|<r\right\}$ in \mathbf{R}^{n} we use the notation $\lambda B=B\left(x_{0}, \lambda r\right)$.

Definition 2. The measure μ (or the weight w) is p-admissible if the following two conditions hold:

- It is doubling, i.e., there exists a doubling constant $C>0$ such that for all balls B,

$$
0<\mu(2 B) \leq C \mu(B)<\infty
$$

- It supports a p-Poincaré inequality, i.e., there exist constants $C>0$ and $\lambda \geq 1$ such that for all balls B and all bounded locally Lipschitz functions u on λB,

$$
f_{B}\left|u-u_{B}\right| d \mu \leq C \operatorname{diam}(B)\left(f_{\lambda B}|\nabla u|^{p} d \mu\right)^{1 / p}
$$

where ∇u is the a.e. defined gradient of u and

$$
u_{B}:=f_{B} u d \mu:=\frac{1}{\mu(B)} \int_{B} u d \mu
$$

This is one of many equivalent definitions of p-admissible weights in the literature; see, e.g., Corollary 20.9 in Heinonen-Kilpeläinen-Martio [11] (which is not in the first edition) and Proposition A. 17 in Björn-Björn 3]. It can be shown that on \mathbf{R}^{n}, the dilation λ in the Poincaré inequality can be taken equal to 1 ; see Jerison [12, Hajłasz-Koskela [10, and the discussion in [11, Chapter 20].

It is not known whether there exist any admissible measures on $\mathbf{R}^{n}, n \geq 2$, which are not absolutely continuous with respect to the Lebesgue measure (and thus given by admissible weights). (On \mathbf{R} all p-admissible measures are absolutely continuous, and even A_{p} weights; see Björn-Buckley-Keith [6.) We therefore formulate our next result in terms of p-admissible measures.
Theorem 3. Let μ_{1} and μ_{2} be p-admissible measures on $\mathbf{R}^{n_{1}}$ and $\mathbf{R}^{n_{2}}$, respectively. Then the product measure $\mu=\mu_{1} \times \mu_{2}$ is p-admissible on $\mathbf{R}^{n_{1}+n_{2}}$.

For a function u on an open subset $\Omega \subset \mathbf{R}^{n_{1}+n_{2}}$ we will denote the gradient by ∇u. The gradients with respect to the first n_{1}, resp., the last n_{2} variables will be denoted by $\nabla_{x} u$ and $\nabla_{y} u$. In this section we will only consider gradients of locally Lipschitz functions, which are thus defined a.e. and coincide with the Sobolev gradients determined by the admissible measures; see Heinonen-Kilpeläinen-Martio [11, Lemma 1.11].

Proof. Let $z=\left(z_{1}, z_{2}\right) \in \mathbf{R}^{n_{1}+n_{2}}$ and $r>0$. We denote balls in $\mathbf{R}^{n_{1}}, \mathbf{R}^{n_{2}}$, and $\mathbf{R}^{n_{1}+n_{2}}$, by $B^{\prime}, B^{\prime \prime}$, and B, respectively. Let

$$
Q(z, r)=B^{\prime}\left(z_{1}, r\right) \times B^{\prime \prime}\left(z_{2}, r\right)
$$

and note that

$$
\begin{equation*}
B(z, r) \subset Q(z, r) \subset B(z, \sqrt{2} r) \tag{2}
\end{equation*}
$$

It follows that for $B=B(z, r)$ we have

$$
\begin{aligned}
\mu(2 B) & \leq \mu(Q(z, 2 r))=\mu_{1}\left(B^{\prime}\left(z_{1}, 2 r\right)\right) \mu_{2}\left(B^{\prime \prime}\left(z_{2}, 2 r\right)\right) \\
& \leq C \mu_{1}\left(B^{\prime}\left(z_{1}, \frac{1}{2} r\right)\right) \mu_{2}\left(B^{\prime \prime}\left(z_{2}, \frac{1}{2} r\right)\right)=C \mu\left(Q\left(z, \frac{1}{2} r\right)\right) \leq C \mu(B),
\end{aligned}
$$

and hence μ is doubling. Here and below, the letter C denotes various positive constants whose values may vary even within a line.

We now turn to the Poincaré inequality. As mentioned above we can assume that the p-Poincaré inequalities for μ_{1} and μ_{2} hold with dilation $\lambda=1$. Let $B=B(z, r)$ and $Q=Q(z, r)=B^{\prime} \times B^{\prime \prime}$. Also let u be an arbitrary bounded locally Lipschitz function on $2 B$ and set

$$
c=f_{Q} u d \mu=f_{B^{\prime \prime}} f_{B^{\prime}} u(s, t) d \mu_{1}(s) d \mu_{2}(t) .
$$

Then by the Fubini theorem,
(3)

$$
\begin{aligned}
f_{Q}|u-c| d \mu \leq & f_{B^{\prime \prime}}\left(f_{B^{\prime}}\left|u(x, y)-f_{B^{\prime}} u(s, y) d \mu_{1}(s)\right| d \mu_{1}(x)\right) d \mu_{2}(y) \\
& +f_{B^{\prime \prime}}\left|f_{B^{\prime}} u(s, y) d \mu_{1}(s)-f_{B^{\prime}} f_{B^{\prime \prime}} u(s, t) d \mu_{2}(t) d \mu_{1}(s)\right| d \mu_{2}(y) \\
= & I_{1}+I_{2}
\end{aligned}
$$

The first integral I_{1} can be estimated using the p-Poincaré inequality for μ_{1} and $u(\cdot, y)$ on B^{\prime}, and then the Hölder inequality with respect to μ_{2}, as follows:

$$
\begin{aligned}
I_{1} & \leq f_{B^{\prime \prime}} C r\left(f_{B^{\prime}}\left|\nabla_{x} u(x, y)\right|^{p} d \mu_{1}(x)\right)^{1 / p} d \mu_{2}(y) \\
& \leq C r\left(f_{B^{\prime \prime}} f_{B^{\prime}}\left|\nabla_{x} u(x, y)\right|^{p} d \mu_{1}(x) d \mu_{2}(y)\right)^{1 / p} \leq C r\left(f_{Q}|\nabla u|^{p} d \mu\right)^{1 / p} .
\end{aligned}
$$

As for the second integral I_{2} in (3) we have by the Fubini theorem,

$$
\begin{aligned}
I_{2} & \leq f_{B^{\prime \prime}} f_{B^{\prime}}\left|u(s, y)-f_{B^{\prime \prime}} u(s, t) d \mu_{2}(t)\right| d \mu_{1}(s) d \mu_{2}(y) \\
& =f_{B^{\prime}} f_{B^{\prime \prime}}\left|u(s, y)-f_{B^{\prime \prime}} u(s, t) d \mu_{2}(t)\right| d \mu_{2}(y) d \mu_{1}(s),
\end{aligned}
$$

which can be estimated in the same way as I_{1}, by switching the roles of the variables. Thus

$$
I_{2} \leq C r\left(f_{Q}|\nabla u|^{p} d \mu\right)^{1 / p}
$$

Summing the estimates for I_{1} and I_{2} and using the doubling property for μ we see that

$$
f_{B}|u-c| d \mu \leq C f_{Q}|u-c| d \mu \leq C r\left(f_{Q}|\nabla u|^{p} d \mu\right)^{1 / p} \leq C r\left(f_{2 B}|\nabla u|^{p} d \mu\right)^{1 / p} .
$$

Finally, a standard argument allows us to replace c on the left-hand side by u_{B} at the cost of an extra factor 2 on the right-hand side; cf. [3, Lemma 4.17]. We conclude that μ supports a p-Poincaré inequality on $\mathbf{R}^{n_{1}+n_{2}}$, and thus that μ is p-admissible.

Remark 4. The proof of Theorem 3 easily generalizes to metric spaces. More precisely, if $\left(X_{j}, d_{j}\right), j=1,2$, are (not necessarily complete) metric spaces equipped with doubling measures μ_{j} supporting p-Poincaré inequalities with dilation constant λ, then $X=X_{1} \times X_{2}$, equipped with the product measure $\mu=\mu_{1} \times \mu_{2}$, supports a p-Poincaré inequality with dilation constant 2λ and μ is a doubling measure. See, e.g., Björn-Björn [3] for the precise definitions of these notions in metric spaces.

Poincaré inequalities in metric spaces are defined using so-called upper gradients, and the main property needed for the proof of Theorem 3 in the metric setting is that whenever $g(\cdot, \cdot)$ is an upper gradient of $u(\cdot, \cdot)$ in X and $y \in X_{2}$, then $g(\cdot, y)$ is an upper gradient of $u(\cdot, y)$ with respect to X_{1}, and similarly for $g(x, \cdot)$ and $u(x, \cdot)$ with $x \in X_{1}$. For this to hold, the metric on $X_{1} \times X_{2}$ can actually be defined using

$$
d\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=\left\|\left(d_{1}\left(x_{1}, x_{2}\right), d_{2}\left(y_{1}, y_{2}\right)\right)\right\|
$$

with an arbitrary norm $\|\cdot\|$ on \mathbf{R}^{2}. In this generality we cannot assume that $\lambda=1$, and therefore λ also needs to be inserted at suitable places in the proof. (If the norm does not satisfy $\|(x, 0)\| \leq\|(x, y)\|$ and $\|(0, y)\| \leq\|(x, y)\|$, then the inclusions (2) need to be modified, necessitating similar changes also later in the proof.) We refrain from this generalization in this note. Also Theorem 5 below can be similarly generalized to metric spaces.

We conclude this section by showing that Theorem 3 admits a converse.
Theorem 5. Assume that $\mu=\mu_{1} \times \mu_{2}$ is a p-admissible measure on $\mathbf{R}^{n_{1}+n_{2}}$. Then μ_{1} and μ_{2} are p-admissible measures on $\mathbf{R}^{n_{1}}$ and $\mathbf{R}^{n_{2}}$, respectively.

Proof. It suffices to show the p-admissibility of μ_{1}. Let $B^{\prime}=\left(z^{\prime}, r\right) \subset \mathbf{R}^{n_{1}}$ be a ball and let $B^{\prime \prime}:=B(0, r) \subset \mathbf{R}^{n_{2}}$. Let u be an arbitrary bounded locally Lipschitz function on B^{\prime} and for $(x, y) \in B^{\prime} \times B^{\prime \prime}$ define $v(x, y)=u(x)$. Then

$$
v_{B^{\prime} \times B^{\prime \prime}}=f_{B^{\prime}} f_{B^{\prime \prime}} v(x, y) d \mu_{1}(x) d \mu_{2}(y)=u_{B^{\prime}}
$$

Note that for $z=\left(z^{\prime}, 0\right) \in \mathbf{R}^{n_{1}+n_{2}}$,

$$
\begin{equation*}
B(z, r) \subset B^{\prime} \times B^{\prime \prime} \subset B(z, \sqrt{2} r)=: \widehat{B} \subset 2 B^{\prime} \times 2 B^{\prime \prime} \subset B(z, 2 \sqrt{2} r) \tag{4}
\end{equation*}
$$

It then follows from the doubling property of μ that

$$
\mu_{1}\left(2 B^{\prime}\right) \mu_{2}\left(2 B^{\prime \prime}\right) \leq \mu(B(z, 2 \sqrt{2} r)) \leq C \mu(B(z, r)) \leq C \mu_{1}\left(B^{\prime}\right) \mu_{2}\left(B^{\prime \prime}\right)
$$

and division by $\mu_{2}\left(2 B^{\prime \prime}\right) \geq \mu_{2}\left(B^{\prime \prime}\right)$ yields $\mu_{1}\left(2 B^{\prime}\right) \leq C \mu_{1}\left(B^{\prime}\right)$, i.e., μ_{1} is doubling.
As for the Poincaré inequality, we have by (4), the doubling property of μ and [3, Lemma 4.17] that

$$
\begin{aligned}
f_{B^{\prime}}\left|u-u_{B^{\prime}}\right| d \mu_{1} & =f_{B^{\prime} \times B^{\prime \prime}}\left|v-v_{B^{\prime} \times B^{\prime \prime}}\right| d \mu \leq 2 f_{B^{\prime} \times B^{\prime \prime}}\left|v-v_{\widehat{B}}\right| d \mu \\
& \leq C f_{\widehat{B}}\left|v-v_{\widehat{B}}\right| d \mu
\end{aligned}
$$

The last integral is estimated using the p-Poincaré inequality for μ and the fact that $\nabla v(x, y)=\nabla u(x)$ as follows:

$$
\begin{aligned}
f_{\widehat{B}}\left|v-v_{\widehat{B}}\right| d \mu & \leq C r\left(f_{\widehat{B}}|\nabla v|^{p} d \mu\right)^{1 / p} \leq C r\left(f_{2 B^{\prime} \times 2 B^{\prime \prime}}|\nabla v|^{p} d \mu\right)^{1 / p} \\
& \leq C r\left(f_{2 B^{\prime}}|\nabla u|^{p} d \mu_{1}\right)^{1 / p}
\end{aligned}
$$

3. Tensor products and sums of quasiminimizers

Throughout this section, $1<p<\infty$ and $\mathbf{R}^{n_{j}}$ is equipped with a p-admissible weight $w_{j}, j=1,2$. It follows from Theorem 3 that $w=w_{1} \otimes w_{2}$ is p-admissible on $\mathbf{R}^{n_{1}+n_{2}}$. We let $d \mu_{j}=w_{j} d x, j=1,2$, and $d \mu=w d x$.

Our aim is to prove Theorem [1. We will also obtain similar results for quasisuperminimizers, which we now define. Let $\Omega \subset \mathbf{R}^{n}$ be an open set. By $\operatorname{Lip}_{0}(\Omega)$ we denote the space of boundedly supported Lipschitz functions vanishing outside Ω.

Definition 6. A function $u: \Omega \rightarrow[-\infty, \infty]$ is a Q-quasi(sub/super)minimizer with respect to a p-admissible weight w in a nonempty open set $\Omega \subset \mathbf{R}^{n}$ if $u \in W_{\text {loc }}^{1, p}(\Omega ; \mu)$ and

$$
\int_{\varphi \neq 0}|\nabla u|^{p} d \mu \leq Q \int_{\varphi \neq 0}|\nabla(u+\varphi)|^{p} d \mu
$$

for all (nonpositive/nonnegative) $\varphi \in \operatorname{Lip}_{0}(\Omega)$.
By splitting φ into its positive and negative parts, it is easily seen that a function is a Q-quasiminimizer if and only if it is both a Q-quasisubminimizer and a Q-quasisuperminimizer.

The Sobolev space $W_{\text {loc }}^{1, p}(\Omega ; \mu)$ is defined as in Heinonen-Kilpeläinen-Martio 11] (although they use the letter H instead of W). See [11, Section 1.9] and [3, Proposition A.17] for the definition of the gradient ∇u for $u \in W_{\text {loc }}^{1, p}(\Omega ; \mu)$, which need not be the distributional gradient of u.

Definition 6 is one of several equivalent definitions of quasi(sub/super)minimizers; see Björn [1 Proposition 3.2], where this was shown on metric spaces. It follows from Propositions A. 11 and A. 17 in [3] that the metric space definitions coincide with the usual ones on weighted \mathbf{R}^{n} (with a p-admissible weight).

For quasisuperminimizers, an analogue of Theorem 1 takes the following form.
Theorem 7. Let u_{j} be a Q_{j}-quasisuperminimizer in $\Omega_{j} \subset \mathbf{R}^{n_{j}}$ with respect to p-admissible weights $w_{j}, j=1,2$, and Q be given by (1). Then $u_{1} \oplus u_{2}$ is a Q-quasisuperminimizer in $\Omega=\Omega_{1} \times \Omega_{2}$ with respect to $w=w_{1} \otimes w_{2}$.

In addition, if both u_{1} and u_{2} are nonnegative/nonpositive, then $u_{1} \otimes u_{2}$ is a Q-quasisuper/subminimizer in Ω with respect to w.

By considering $-u_{1}$ and $-u_{2}$, we easily obtain a corresponding result for quasisubminimizers. Usually, $Q_{j} \geq 1$ but we also allow for $Q_{j}=0$. This can only happen when u_{j} is constant (a.e. in each component of Ω_{j}), but when this is fulfilled in Theorem 1 or 7 it immediately implies the following conclusion.

Corollary 8. If u is a Q-quasi(super)minimizer in $\Omega \subset \mathbf{R}^{n_{1}}$ with respect to a p-admissible weight w_{1}, and we let $v(x, y)=u(x)$ for $(x, y) \in \Omega \times \mathbf{R}^{n_{2}}$, then v is a Q-quasi(super)minimizer in $\Omega \times \mathbf{R}^{n_{2}}$ with respect to $w=w_{1} \otimes w_{2}$, whenever w_{2} is a p-admissible weight on $\mathbf{R}^{n_{2}}$.

Proof. As $v=u \oplus \mathbf{0}$, where $\mathbf{0}$ is the zero function, this follows directly from Theorems 1 and 7

Proof of Theorem 1. Since u_{1} and u_{2} are finite a.e., and the quasiminimizing property is the same for all representatives of an equivalence class in the local Sobolev space, we may assume that u_{1} and u_{2} are finite everywhere.

First, we show that $u:=u_{1} \otimes u_{2}$ is a Q-quasiminimizer. Note that

$$
|\nabla u(x, y)|^{p}=\left(\left|\nabla_{x} u(x, y)\right|^{2}+\left|\nabla_{y} u(x, y)\right|^{2}\right)^{p / 2},
$$

where $\nabla_{x} u(x, y)=u_{2}(y) \nabla u_{1}(x)$ and $\nabla_{y} u(x, y)=u_{1}(x) \nabla u_{2}(y)$.
Let $\varphi \in \operatorname{Lip}_{0}(\Omega)$ be arbitrary. For a fixed $y \in \Omega_{2}$, let

$$
\Omega_{1}^{y}=\left\{x \in \Omega_{1}: \varphi(x, y) \neq 0\right\} .
$$

As u_{1} is a Q_{1}-quasiminimizer in Ω_{1}, so is $u(\cdot, y)=u_{2}(y) u_{1}(\cdot)$. Since $\varphi(\cdot, y) \in$ $\operatorname{Lip}_{0}\left(\Omega_{1}^{y}\right)$, we get

$$
\int_{\Omega_{1}^{y}}\left|\nabla_{x} u(x, y)\right|^{p} d \mu_{1}(x) \leq Q_{1} \int_{\Omega_{1}^{y}}\left|\nabla_{x}(u(x, y)+\varphi(x, y))\right|^{p} d \mu_{1}(x) .
$$

Integrating over all $y \in \Omega_{2}$ with nonempty Ω_{1}^{y} yields

$$
\begin{equation*}
\int_{\varphi \neq 0}\left|\nabla_{x} u\right|^{p} d \mu \leq Q_{1} \int_{\varphi \neq 0}\left|\nabla_{x}(u+\varphi)\right|^{p} d \mu \tag{5}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
\int_{\varphi \neq 0}\left|\nabla_{y} u\right|^{p} d \mu \leq Q_{2} \int_{\varphi \neq 0}\left|\nabla_{y}(u+\varphi)\right|^{p} d \mu \tag{6}
\end{equation*}
$$

Now we consider four cases.
Case $1\left(Q_{1}=0\right)$. In this case, $\nabla u_{1} \equiv 0$ a.e., and so $\nabla_{x} u \equiv 0$ a.e. Hence, by (6),

$$
\begin{aligned}
\int_{\varphi \neq 0}|\nabla u|^{p} d \mu=\int_{\varphi \neq 0}\left|\nabla_{y} u\right|^{p} d \mu & \leq Q_{2} \int_{\varphi \neq 0}\left|\nabla_{y}(u+\varphi)\right|^{p} d \mu \\
& \leq Q_{2} \int_{\varphi \neq 0}|\nabla(u+\varphi)|^{p} d \mu
\end{aligned}
$$

and thus u is a Q_{2}-quasiminimizer.
Case $2\left(Q_{2}=0\right)$. This is similar to Case 1 .
Case $3(p \leq 2)$. In this case, summing (5) and (6) gives

$$
\begin{aligned}
\int_{\varphi \neq 0}|\nabla u|^{p} d \mu & \leq \int_{\varphi \neq 0}\left(\left|\nabla_{x} u\right|^{p}+\left|\nabla_{y} u\right|^{p}\right) d \mu \\
& \leq \int_{\varphi \neq 0}\left(Q_{1}\left|\nabla_{x}(u+\varphi)\right|^{p}+Q_{2}\left|\nabla_{y}(u+\varphi)\right|^{p}\right) d \mu
\end{aligned}
$$

This proves the result for $p=2$. For $p<2$, the Hölder inequality applied to the sum $Q_{1} a^{p}+Q_{2} b^{p}$ in the last integrand shows that

$$
\begin{aligned}
\int_{\varphi \neq 0}|\nabla u|^{p} d \mu \leq & \left(Q_{1}^{2 /(2-p)}+Q_{2}^{2 /(2-p)}\right)^{1-p / 2} \\
& \times \int_{\varphi \neq 0}\left(\left|\nabla_{x}(u+\varphi)\right|^{2}+\left|\nabla_{y}(u+\varphi)\right|^{2}\right)^{p / 2} d \mu \\
= & \left(Q_{1}^{2 /(2-p)}+Q_{2}^{2 /(2-p)}\right)^{1-p / 2} \int_{\varphi \neq 0}|\nabla(u+\varphi)|^{p} d \mu
\end{aligned}
$$

Case $4\left(p \geq 2\right.$ and $\left.Q_{1}, Q_{2}>0\right)$. Rewrite $|\nabla u|^{p}$ as

$$
|\nabla u|^{p}=\left(\left|\nabla_{x} u\right|^{2}+\left|\nabla_{y} u\right|^{2}\right)^{p / 2}=\left(Q_{1}^{2 / p}\left(\frac{1}{Q_{1}}\right)^{2 / p}\left|\nabla_{x} u\right|^{2}+Q_{2}^{2 / p}\left(\frac{1}{Q_{2}}\right)^{2 / p}\left|\nabla_{y} u\right|^{2}\right)^{p / 2}
$$

The Hölder inequality applied to the sum $Q_{1}^{2 / p} a^{2}+Q_{2}^{2 / p} b^{2}$ implies

$$
|\nabla u|^{p} \leq\left(Q_{1}^{2 /(p-2)}+Q_{2}^{2 /(p-2)}\right)^{(p-2) / 2}\left(\frac{1}{Q_{1}}\left|\nabla_{x} u\right|^{p}+\frac{1}{Q_{2}}\left|\nabla_{y} u\right|^{p}\right)
$$

Integrating over the set $\{(x, y) \in \Omega: \varphi(x, y) \neq 0\}$ and using (5) and (6) we obtain

$$
\begin{aligned}
\int_{\varphi \neq 0}|\nabla u|^{p} d \mu \leq & \left(Q_{1}^{2 /(p-2)}+Q_{2}^{2 /(p-2)}\right)^{(p-2) / 2} \\
& \times \int_{\varphi \neq 0}\left(\left|\nabla_{x}(u+\varphi)\right|^{p}+\left|\nabla_{y}(u+\varphi)\right|^{p}\right) d \mu
\end{aligned}
$$

As $p / 2 \geq 1$, the elementary inequality $a^{p}+b^{p} \leq\left(a^{2}+b^{2}\right)^{p / 2}$ concludes the proof for u.

We now turn to $v:=u_{1} \oplus u_{2}$. Let $\varphi \in \operatorname{Lip}_{0}(\Omega)$ be arbitrary. Note that

$$
|\nabla v(x, y)|^{p}=\left(\left|\nabla_{x} v(x, y)\right|^{2}+\left|\nabla_{y} v(x, y)\right|^{2}\right)^{p / 2}=\left(\left|\nabla u_{1}(x)\right|^{2}+\left|\nabla u_{2}(y)\right|^{2}\right)^{p / 2}
$$

and

$$
|\nabla(v+\varphi)|^{p}=\left(\left|\nabla_{x}(v+\varphi)\right|^{2}+\left|\nabla_{y}(v+\varphi)\right|^{2}\right)^{p / 2}
$$

For a fixed $y \in \Omega_{2}$, let

$$
\Omega_{1}^{y}=\left\{x \in \Omega_{1}: \varphi(x, y) \neq 0\right\} .
$$

As u_{1} is a Q_{1}-quasiminimizer in Ω_{1} and $\varphi(\cdot, y) \in \operatorname{Lip}_{0}\left(\Omega_{1}^{y}\right)$, we get

$$
\int_{\Omega_{1}^{y}}\left|\nabla u_{1}(x)\right|^{p} d \mu_{1}(x) \leq Q_{1} \int_{\Omega_{1}^{y}}\left|\nabla_{x}\left(u_{1}(x, y)+\varphi(x, y)\right)\right|^{p} d \mu_{1}(x)
$$

Integrating over all $y \in \Omega_{2}$ with nonempty Ω_{1}^{y} yields

$$
\int_{\varphi \neq 0}\left|\nabla u_{1}\right|^{p} d \mu_{1}(x) d \mu_{2}(y) \leq Q_{1} \int_{\varphi \neq 0}\left|\nabla_{x}(v+\varphi)\right|^{p} d \mu_{1}(x) d \mu_{2}(y)
$$

i.e., (5) holds. Similarly, (6) holds and the rest of the proof is as for u.

Proof of Theorem 7. This proof is very similar to the proof above. In this case we of course assume that $\varphi \in \operatorname{Lip}_{0}(\Omega)$ is nonnegative/nonpositive.

The only other difference in the proof is that since u_{1} is a Q_{1}-quasisuperminimizer in Ω_{1} and $u_{2}(y)$ is nonnegative/nonpositive, we can conclude that

$$
u(\cdot, y)=u_{2}(y) u_{1}(\cdot)
$$

is a Q_{1}-quasisuper/subminimizer in Ω_{1}. The rest of the proof is the same; in particular the proof for v needs no nontrivial changes, and is thus valid also when u_{1} and u_{2} change sign.

For tensor sums one can use Theorem 7 to deduce (the corresponding part of) Theorem 1 For tensor products this is not possible as in this case the quasisuperminimizers in Theorem 7 need to be nonnegative. This nonnegativity is an essential assumption for quasisuperminimizers, which is not required for quasiminimizers. (To see this consider what happens when $u_{2} \equiv-1$.) We can, however, obtain the following result.

Theorem 9. Let u_{1} be a Q_{1}-quasisub/superminimizer in Ω_{1} and $u_{2} \geq 0$ be a Q_{2} quasiminimizer in Ω_{2}, with respect to p-admissible weights w_{1} and w_{2}, respectively.

Then $u_{1} \otimes u_{2}$ is a Q-quasisub/superminimizer in $\Omega=\Omega_{1} \times \Omega_{2}$ with respect to $w=w_{1} \otimes w_{2}$, where Q is given by (11).
Proof. This is proved using a similar modification of the proof of Theorem 1 as we did when proving Theorem[7. The key fact is that quasiminimizers are preserved under multiplication by real numbers, while the corresponding fact for quasisub/superminimizers is only true under multiplication by nonnegative real numbers.

Acknowledgment

We thank Nageswari Shanmugalingam for a fruitful discussion concerning Theorem 5

References

[1] Anders Björn, A weak Kellogg property for quasiminimizers, Comment. Math. Helv. 81 (2006), no. 4, 809-825, DOI 10.4171/CMH/75. MR 2271223
[2] Anders Björn and Jana Björn, Power-type quasiminimizers, Ann. Acad. Sci. Fenn. Math. 36 (2011), no. 1, 301-319, DOI 10.5186/aasfm.2011.3619. MR 2797698
[3] Anders Björn and Jana Björn, Nonlinear potential theory on metric spaces, EMS Tracts in Mathematics, vol. 17, European Mathematical Society (EMS), Zürich, 2011. MR2867756
[4] Jana Björn, Poincaré inequalities for powers and products of admissible weights, Ann. Acad. Sci. Fenn. Math. 26 (2001), no. 1, 175-188. MR 1816566
[5] Jana Björn, Sharp exponents and a Wiener type condition for boundary regularity of quasiminimizers, Adv. Math. 301 (2016), 804-819, DOI 10.1016/j.aim.2016.06.024. MR3539390
[6] Jana Björn, Stephen Buckley, and Stephen Keith, Admissible measures in one dimension, Proc. Amer. Math. Soc. 134 (2006), no. 3, 703-705, DOI 10.1090/S0002-9939-05-07925-6. MR 2180887
[7] Seng-Kee Chua and Richard L. Wheeden, Sharp conditions for weighted 1-dimensional Poincaré inequalities, Indiana Univ. Math. J. 49 (2000), no. 1, 143-175, DOI 10.1512/iumj.2000.49.1754. MR1777034
[8] Mariano Giaquinta and Enrico Giusti, On the regularity of the minima of variational integrals, Acta Math. 148 (1982), 31-46, DOI 10.1007/BF02392725. MR666107
[9] Mariano Giaquinta and Enrico Giusti, Quasiminima, Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (1984), no. 2, 79-107. MR 778969
[10] Piotr Hajłasz and Pekka Koskela, Sobolev meets Poincaré (English, with English and French summaries), C. R. Acad. Sci. Paris Sér. I Math. 320 (1995), no. 10, 1211-1215. MR 1336257
[11] Juha Heinonen, Tero Kilpeläinen, and Olli Martio, Nonlinear potential theory of degenerate elliptic equations, Dover Publications, Inc., Mineola, NY, 2006. Unabridged republication of the 1993 original. MR2305115
[12] David Jerison, The Poincaré inequality for vector fields satisfying Hörmander's condition, Duke Math. J. 53 (1986), no. 2, 503-523, DOI 10.1215/S0012-7094-86-05329-9. MR850547
[13] Tero Kilpeläinen, Pekka Koskela, and Hiroaki Masaoka, Lattice property of p-admissible weights, Proc. Amer. Math. Soc. 143 (2015), no. 6, 2427-2437, DOI 10.1090/S0002-9939-2015-12416-1. MR3326025
[14] Juha Kinnunen and Olli Martio, Potential theory of quasiminimizers, Ann. Acad. Sci. Fenn. Math. 28 (2003), no. 2, 459-490. MR 1996447
[15] Guozhen Lu and Richard L. Wheeden, Poincaré inequalities, isoperimetric estimates, and representation formulas on product spaces, Indiana Univ. Math. J. 47 (1998), no. 1, 123-151, DOI 10.1512/iumj.1998.47.1494. MR 1631545
[16] O. Martio and C. Sbordone, Quasiminimizers in one dimension: integrability of the derivative, inverse function and obstacle problems, Ann. Mat. Pura Appl. (4) 186 (2007), no. 4, 579-590, DOI 10.1007/s10231-006-0020-3. MR2317779

Department of Mathematics, Linköping University, SE-581 83 Linköping, Sweden
Email address: anders.bjorn@liu.se
Department of Mathematics, Linköping University, SE-581 83 Linköping, Sweden
Email address: jana.bjorn@liu.se

[^0]: Received by the editors July 6, 2017, and, in revised form, March 20, 2018.
 2010 Mathematics Subject Classification. Primary 31C45; Secondary 35J60, 46E35.
 Key words and phrases. Doubling measure, metric space, p-admissible weight, p-harmonic function, Poincaré inequality, quasiminimizer, quasisuperminimizer, tensor product, tensor sum.

 The authors were supported by the Swedish Research Council, grants 621-2007-6187, 621-20084922, 621-2014-3974, and 2016-03424.

