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AVERAGING ONE-POINT HYPERBOLIC-TYPE METRICS

ASUMAN GÜVEN AKSOY, ZAIR IBRAGIMOV, AND WESLEY WHITING

(Communicated by Jeremy T. Tyson)

Abstract. It is known that the j̃-metric, the half-Apollonian metric, and the
scale-invariant Cassinian metric are not Gromov hyperbolic. These metrics are
defined as a supremum of one-point metrics (i.e., metrics constructed using one
boundary point), and the supremum is taken over all boundary points. The
aim of this paper is to show that taking the average instead of the supremum
yields a metric that is Gromov hyperbolic. Moreover, we show that the Gromov
hyperbolicity constant of the resulting metric does not depend on the number
of boundary points used in taking the average. We also provide an example to
show that the average of Gromov hyperbolic metrics is not, in general, Gromov
hyperbolic.

1. Introduction

The hyperbolic metric is a powerful tool in planar complex analysis and geo-
metric function theory (see [2] and the references therein). In higher-dimensional
Euclidean spaces, the hyperbolic metric exists only in balls and half-spaces, and the
lack of a hyperbolic metric in general domains has been a primary motivation for
introducing the so-called hyperbolic-type metrics in geometric function theory. Ex-
amples of such metrics include the j̃-metric, the Apollonian metric, Seittenranta’s
metric, the half-Apollonian metric, the scale-invariant Cassinian metric, and the
Möbius-invariant Cassinian metric (see [1, 11–13, 17, 19, 20, 22–24] and the refer-
ences therein). All these metrics are so-called point-distance metrics, meaning that
they are defined in terms of distance functions and can be classified into one-point
metrics or two-point metrics based on the number of boundary points used in their
definitions. For example, the Apollonian, Seittenranta, and the Möbius-invariant
Cassinian metrics are two-point, point-distance metrics. Their corresponding one-
point versions, namely, the half-Apollonian metric, the j̃-metric, and the scale-
invariant Cassinian metric, are one-point point-distance metrics. In this paper we
only consider hyperbolic-type point-distance metrics. There are other hyperbolic-
type metrics termed as hyperbolic-type length metrics such as the quasihyperbolic
metric, Ferrand’s metric, and the Kulkarni–Pinkall metric that have been exten-
sively studied by many authors (see [7, 9, 14, 15, 21]).

One of the key features of the hyperbolic-type metrics is their Gromov hyperbol-
icity. The latter was introduced by Gromov in 1987 as an extension of the concept
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of negative curvature to general metric spaces [10]. This notion has found appli-
cations in many areas of mathematics and is widely used in geometric function
theory, geometric group theory, and analysis on metric spaces. For more discussion
of Gromov hyperbolic spaces the reader is referred to [2–4, 6, 10, 25].

The Apollonian, Seittenranta, and Möbius-invariant Cassinian metrics are rough-
ly similar to each other and, in particular, they are all Gromov hyperbolic (see
[20, Theorem 4.8 and Theorem 5.4]). The j̃-metric, the half-Apollonian, and the
scale-invariant Cassinian metrics are also roughly similar to each other [19, Theorem
3.3 and Theorem 3.5]. However, they are Gromov hyperbolic if and only if the
underlying domain has only one boundary point. In other words, if the domain
has more than one boundary point, then these metrics, which are defined as the
supremums over all boundary points, are not Gromov hyperbolic.

Recall the following general approach to constructing one-point hyperbolic-type
metrics in the setting of Euclidean spaces. Let D ⊂ R

n be any domain with
nonempty boundary ∂D. To construct a one-point hyperbolic-type metric dD on
D, one first constructs a Gromov hyperbolic metric dp on the one-punctured space
R

n \{p} for each p ∈ R
n and then defines dD by dD(x, y) = sup{dp(x, y) : p ∈ ∂D}.

Taking a supremum in this context is very natural since the boundary ∂D is usually
uncountable. However, as it turns out, the Gromov hyperbolicity property of dp is
not preserved when taking the supremum.

In this paper we propose an alternative approach to constructing a metric from
the one-point metrics mentioned above. Namely, we propose to take the aver-
age of these one-point metrics instead of taking their supremum. As mentioned
above, these metrics are roughly similar to each other and hence so are their av-
erages. Therefore, here we consider only the one-point scale-invariant Cassinian
metrics. The main result of this paper states that the average of finitely many
one-point scale-invariant Cassinian metrics is Gromov hyperbolic and, more im-
portantly, its Gromov hyperbolicity constant does not depend on the number of
metrics (Lemma 4.1 and Theorem 4.2). Even though here we consider the averages
of finitely many metrics, the fact that the Gromov hyperbolicity constant is inde-
pendent of the number of metrics makes it possible to consider domains which are
the complements of certain self-similar sets [16].

To the best of our knowledge, averaging one-point metrics has not been consid-
ered before. However, germs of this idea can be traced back to the work of F. W.
Gehring and B. Osgood. More precisely, let D be a proper subdomain of Rn. Then
the jD-metric (see, [8, p. 51]),

jD(x, y) =
1

2

[
log

(
1 +

|x− y|
dist(x, ∂D)

)
+ log

(
1 +

|x− y|
dist(y, ∂D)

)]
,

which is an average, is Gromov hyperbolic [11, Theorem 1]. As mentioned above,
the j̃D-metric,

j̃D(x, y) = sup
{
log

(
1 +

|x− y|
dist(x, ∂D)

)
, log

(
1 +

|x− y|
dist(y, ∂D)

)}
,

which is a supremum, is not Gromov hyperbolic [11, Theorem 3]. (Note that in [11]
the author denotes the j-metric by j̃ and the j̃-metric by j.)

Now we are ready to formulate the main results of the paper. Here and through-
out the paper, we let (X, d) be an arbitrary metric space containing at least four
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points. For each p ∈ X, we define a distance function τp on X \ {p} by

(1.1) τp(x, y) = log
(
1 + 2

d(x, y)√
d(x, p)d(y, p)

)
.

For p1, p2, . . . , pk ∈ X and D = X \ {p1, p2, . . . , pk}, we define a metric τD on D by
taking the simple average of the metrics τpi

, namely,

τ̂D(x, y) =
1

k

k∑
i=1

τpi
(x, y) =

1

k

k∑
i=1

log
(
1 + 2

d(x, y)√
d(x, pi)d(y, pi)

)
.

We prove that for each p ∈ X, the metric τp is Gromov hyperbolic with δ =
log 3 + log 2 (Lemma 4.1) and that for any k ≥ 1, the metric τ̂D(x, y) is Gromov
hyperbolic with δ = 3 log 3+2 log 2 (Theorem 4.2). The latter result is unexpected
since we also provide an example to demonstrate that the average of two Gromov
hyperbolic metrics is not necessarily Gromov hyperbolic (Lemma 4.4).

2. One-point scale-invariant Cassinian

metric on general metric spaces

In this section we define the one-point scale-invariant Cassinian metrics in the
context of arbitrary metric spaces, and in Section 4 we study Gromov hyperbolicity
of the average of finitely many such metrics. Let (X, d) be a metric space. For each
p ∈ X, we define a distance function τp on X \ {p} by

(2.1) τp(x, y) = log
(
1 + 2

d(x, y)√
d(x, p)d(y, p)

)
.

Theorem 2.1. Let (X, d) be an arbitrary metric space, and let p ∈ X be an arbi-
trary point. Then the distance function τp is a metric on X \ {p}.

Proof. Clearly, τp(x, y) ≥ 0, τp(x, y) = τp(y, x), and τp(x, y) = 0 if and only if
x = y. So it is enough to show that the triangle inequality holds. That is,

(2.2) τp(x, y) ≤ τp(x, z) + τp(z, y)

for all x, y, z ∈ D. Inequality (2.2) is equivalent to

d(x, y)√
d(x, p)d(y, p)

≤ d(x, z)√
d(x, p)d(z, p)

+
d(z, y)√

d(z, p)d(y, p)
+ 2

d(x, z)d(z, y)

d(z, p)
√
d(x, p)d(y, p)

or, equivalently,

(2.3)
d(x, y)d(z, p)

d(x, z)d(y, z)
≤

√
d(x, p)d(z, p)

d(x, z)
+

√
d(y, p)d(z, p)

d(y, z)
+ 2.

Since

d(x, y)d(z, p)

d(x, z)d(y, z)
≤ d(y, z)d(z, p)

d(x, z)d(y, z)
+

d(x, z)d(z, p)

d(x, z)d(y, z)
=

d(z, p)

d(x, z)
+

d(z, p)

d(y, z)
,

it suffices to show that

d(z, p)

d(x, z)
≤

√
d(x, p)d(z, p)

d(x, z)
+ 1 and

d(z, p)

d(y, z)
≤

√
d(y, p)d(z, p)

d(y, z)
+ 1.

Due to symmetry, it suffices to prove the first inequality. If d(z, p) ≤ d(x, p), then

d(z, p)

d(x, z)
≤

√
d(x, p)d(z, p)

d(x, z)
<

√
d(x, p)d(z, p)

d(x, z)
+ 1.
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If d(x, p) ≤ d(z, p), then

d(z, p)

d(x, z)
≤ d(x, z) + d(x, p)

d(x, z)
≤ d(x, z) +

√
d(x, p)d(z, p)

d(x, z)
=

√
d(x, p)d(z, p)

d(x, z)
+ 1,

completing the proof. �

Remark 2.2. Inequality (2.3) implies that the constant 2 in equation (2.1) can be
replaced with any constant c ≥ 2 (see also [5, Theorem 1.1]).

One can easily see that for all x, y ∈ X \ {p} we have

(2.4) τ̃p(x, y) ≤ τp(x, y) ≤ τ̃p(x, y) + log 2.

Here

(2.5) τ̃p(x, y) = log
(
1 +

d(x, y)√
d(x, p)d(y, p)

)
= log

μp(x, y)√
d(x, p)d(y, p)

.

The distance function τ̃p was introduced and studied in the context of Euclidean
spaces in [19], where it was referred to as a one-point scale-invariant Cassinian
metric. However, τ̃p is not a metric in the context of general metric spaces. Indeed,
let X = {p, x, y, z} and define d(p, x) = d(y, z) = 2 and d(p, y) = d(p, z) = d(x, y) =
d(x, z) = 1. Clearly, d is a metric on X. One can easily see that τ̃p(y, z) >
τ̃p(x, y)+τ̃p(x, z). Therefore, τ̃p is not a metric onX\{p} justifying the introduction
of its modified version τp. However, it turns out that if (X, d) is a Ptolemaic metric
space, then τ̃p is a metric on X \ {p} for each p ∈ X. Recall that a metric space
(X, d) is called Ptolemaic if

(2.6) d(x, y)d(z, w) ≤ d(x, z)d(y, w) + d(x,w)d(y, z)

for all x, y, z, w ∈ X.

Theorem 2.3. Let (X, d) be a Ptolemaic metric space, and let p ∈ X be an arbi-
trary point. Then the distance function τ̃p is a metric on X \ {p}.

Proof. Clearly, it is enough to show that the triangle inequality holds. That is,

(2.7) τ̃p(x, y) ≤ τ̃p(x, z) + τ̃p(z, y)

for all x, y, z ∈ X \ {p}. Inequality (2.7) is equivalent to(
1 +

d(x, y)√
d(x, p)d(y, p)

)
≤

(
1 +

d(x, z)√
d(x, p)d(z, p)

)(
1 +

d(z, y)√
d(z, p)d(y, p)

)
,

which is equivalent to

d(x, y)√
d(x, p)d(y, p)

≤ d(x, z)√
d(x, p)d(z, p)

+
d(z, y)√

d(z, p)d(y, p)
+

d(x, z)d(z, y)

d(z, p)
√
d(x, p)d(y, p)

.

(2.8)

Without loss of generality we can assume that d(x, p) ≤ d(y, p).
If d(z, p) ≤ d(x, p) ≤ d(y, p), then√
d(x, p)d(y, p) ≥

√
d(x, p)d(z, p) and

√
d(x, p)d(y, p) ≥

√
d(z, p)d(y, p).
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By the triangle inequality we then obtain

d(x, y)√
d(x, p)d(y, p)

≤ d(x, z)√
d(x, p)d(y, p)

+
d(z, y)√

d(x, p)d(y, p)

≤ d(x, z)√
d(x, p)d(z, p)

+
d(z, y)√

d(z, p)d(y, p)
,

establishing (2.8).
If d(x, p) ≤ d(y, p) ≤ d(z, p), then

d(z, p)d(x, y) ≤ d(y, p)d(x, z) + d(x, p)d(z, y)

by Ptolemy’s Inequality. Since d(x, p) ≤ d(z, p) and d(y, p) ≤ d(z, p), we have

d(x, p) ≤
√
d(x, p)d(z, p) and d(y, p) ≤

√
d(y, p)d(z, p).

Hence

d(z, p)d(x, y) ≤
√
d(y, p)d(z, p)d(x, z) +

√
d(x, p)d(z, p)d(z, y).

Consequently,

d(x, y)√
d(x, p)d(y, p)

≤ d(x, z)√
d(x, p)d(z, p)

+
d(z, y)√

d(z, p)d(y, p)
,

establishing (2.8).

Finally, if d(x, p) ≤ d(z, p) ≤ d(y, p), then d(x, p) ≤
√
d(x, p)d(z, p) since

d(x, p) ≤ d(z, p). By the triangle inequality we have d(z, p) ≤ d(x, p) + d(x, z).
Hence

d(z, p) ≤
√
d(x, p)d(z, p) + d(x, z),

or, equivalently,

1√
d(x, p)

≤ 1√
d(z, p)

+
d(x, z)

d(z, p)
√
d(x, p)

.

Thus,

(2.9)
d(z, y)√

d(x, p)d(y, p)
≤ d(z, y)√

d(z, p)d(y, p)
+

d(x, z)d(z, y)

d(z, p)
√
d(x, p)d(y, p)

.

Now by the triangle inequality we have

(2.10)
d(x, y)√

d(x, p)d(y, p)
≤ d(x, z)√

d(x, p)d(y, p)
+

d(z, y)√
d(x, p)d(y, p)

.

Also, since d(z, p) ≤ d(y, p), we have

(2.11)
d(x, z)√

d(x, p)d(y, p)
≤ d(x, z)√

d(x, p)d(z, p)
.

Therefore, combining inequalities (2.9), (2.10), and (2.11), we see that inequality
(2.8) holds also in this case. The proof is complete. �

Definition 2.4. In the context of a general metric space (X, d), the metrics τp,
p ∈ X, are called one-point scale-invariant Cassinian metrics.
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3. Technical results

In this section we establish several results needed in Section 4. Throughout this
section we let (X, d) be an arbitrary metric space. Fix a point p ∈ X and define

μp(x, y) = d(x, y) +
√
d(x, p)d(y, p) for x, y ∈ X.

In this section we study some properties of μp, especially Lemmas 3.1 and 3.5,
which will be needed in Section 4. In what follows, we set

a ∧ b = min{a, b} and a ∨ b = max{a, b}

for nonnegative real numbers a and b. Observe that

(3.1) (a ∨ b)(c ∨ d) = ac ∨ ad ∨ bc ∨ bd

for all nonnegative real numbers a, b, c, d.

Lemma 3.1. For all x, y, z, w ∈ X we have

(3.2) μp(x, y)μp(z, w) ≤ 9
[
μp(x, z)μp(y, w) ∨ μp(x,w)μp(y, z)

]
.

Proof. Since d(x, y) ≤ d(x, p) + d(y, p) ≤ 2(d(x, p) ∨ d(y, p)) and since√
d(x, p)d(y, p) ≤ d(x, p) + d(y, p)

2
≤ d(x, p) ∨ d(y, p),

we have

(3.3) μp(x, y) ≤
3

2

[
d(x, p) + d(y, p)

]
≤ 3

[
d(x, p) ∨ d(y, p)

]
for all x, y ∈ X. Also, since d(x, y) ≥ d(x, p) ∨ d(y, p) − d(x, p) ∧ d(y, p) and since√
d(x, p)d(y, p) ≥ d(x, p) ∧ d(y, p), we have

(3.4) μp(x, y) ≥ d(x, p) ∨ d(y, p) ≥ 1

2

[
d(x, p) + d(y, p)

]
for all x, y ∈ X. Using (3.1), (3.3), and (3.4) we have

1

9
μp(x, y)μp(z, w) ≤

[
d(x, p) ∨ d(y, p)

][
d(z, p) ∨ d(w, p)

]
= d(x, p)d(z, p) ∨ d(x, p)d(w, p) ∨ d(y, p)d(z, p) ∨ d(y, p)d(w, p)

≤
[
d(x, p)d(y, p) ∨ d(x, p)d(w, p) ∨ d(z, p)d(y, p) ∨ d(z, p)d(w, p)

]
∨

[
d(x, p)d(y, p) ∨ d(x, p)d(z, p) ∨ d(w, p)d(y, p) ∨ d(w, p)d(z, p)

]
=

[(
d(x, p) ∨ d(z, p)

)(
d(y, p) ∨ d(w, p)

)]
∨

[(
d(x, p) ∨ d(w, p)

)(
d(y, p) ∨ d(z, p)

)]
≤ μp(x, z)μp(y, w) ∨ μp(x,w)μp(y, z),

as required. �

Note that

(3.5) μp(x, z) + μq(y, z) ≥ d(x, z) + d(y, z) ≥ d(x, y)

for all x, y, z, q ∈ X. In particular, for all x, y, z, q ∈ X, we have

(3.6) μp(x, z) ∨ μq(y, z) ≥
1

2
d(x, y).
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Lemma 3.2. Let x, y, z ∈ X be arbitrary points. If

μp(x, z) ∨ μp(y, z) ≥ K
[
μp(x, z) ∧ μp(y, z)

]
for some K > 3, then

μp(x, z) + μp(y, z) ≤
3(K + 3)

2(K − 3)
d(x, y).

Proof. Without loss of generality we can assume that μp(x, z) ≥ μp(y, z). Using
(3.4) we obtain

K

2

(
d(y, p) + d(z, p)

)
≤ Kμp(y, z) ≤ μp(x, z) ≤

3

2

(
d(x, p) + d(z, p)

)
,

which implies Kd(y, p) + (K − 3)d(z, p) ≤ 3d(x, p). In particular,

2d(z, p) ≤ 6

K − 3
d(x, p)− 2K

K − 3
d(y, p).

The latter, along with (3.3), implies

μp(x, z) + μp(y, z) ≤
3

2

(
d(x, p) + d(y, p) + 2d(z, p)

)
≤ 3

2

(
d(x, p) + d(y, p) +

6

K − 3
d(x, p)− 2K

K − 3
d(y, p)

)
=

3(K + 3)

2(K − 3)

(
d(x, p)− d(y, p)

)
≤ 3(K + 3)

2(K − 3)
d(x, y),

completing the proof. �

Suppose now that p1, p2, . . . , pk are arbitrary points inX and set P = {p1, p2, . . . ,
pk}.

Lemma 3.3. For all x, y, z ∈ X we have

(3.7)

k∏
i=1

(
μpi

(x, z) + μpi
(y, z)

)
≤ 9k

(
k∏

i=1

μpi
(x, z) +

k∏
i=1

μpi
(y, z)

)
.

Proof. Let x, y, z ∈ X be arbitrary points. For simplicity, we set

ai = μpi
(x, z) and bi = μpi

(y, z), i = 1, 2, . . . , k.

By (3.6) we then have

(3.8) ai ∨ bj ≥
1

2
d(x, y) for all i, j = 1, 2, . . . , k.

We will prove the lemma by induction. Assume first that k = 2. Hence we need to
show that

(3.9) (a1 + b1)(a2 + b2) ≤ 81(a1a2 + b1b2).

Case 1 (a1 ∨ b1 ≤ 6(a1 ∧ b1) or a2 ∨ b2 ≤ 6(a2 ∧ b2)). Without loss of generality we
can assume that a1 ∨ b1 ≤ 6(a1 ∧ b1). Then

a1 + b1 = a1 ∨ b1 + a1 ∧ b1 ≤ 7(a1 ∧ b1) and (a1 ∧ b1)(a2 + b2) ≤ a1a2 + b1b2.

Hence

(a1 + b1)(a2 + b2) ≤ 7(a1 ∧ b1)(a2 + b2) ≤ 7(a1a2 + b1b2)

so that (3.9) holds in this case.
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Case 2 (a1 ∨ b1 ≥ 6(a1 ∧ b1) and a2 ∨ b2 ≥ 6(a2 ∧ b2)). Without loss of generality
we can assume that a1 = a1 ∧ b1 ∧ a2 ∧ b2. By (3.8) we then have

b1 ≥ 1

2
d(x, y) and b2 ≥ 1

2
d(x, y).

Hence

a1a2 + b1b2 ≥ b1b2 ≥ 1

4

[
d(x, y)

]2
.

Also, by Lemma 3.2 we have

a1 + b1 ≤ 9

2
d(x, y) and a2 + b2 ≤ 9

2
d(x, y),

and hence

(a1 + b1)(a2 + b2) ≤
81

4

[
d(x, y)

]2
.

Consequently,

(a1 + b1)(a2 + b2) ≤
81

4

[
d(x, y)

]2 ≤ 81(a1a2 + b1b2),

completing the proof of the lemma for k = 2.

Assume now that (3.7) holds for k = m. That is,

(3.10)

m∏
i=1

(ai + bi) ≤ 9m
( m∏

i=1

ai +

m∏
i=1

bi

)
.

We need to show that it also holds for k = m+ 1. That is,

(3.11)

m+1∏
i=1

(ai + bi) ≤ 9m+1
(m+1∏

i=1

ai +

m+1∏
i=1

bi

)
.

Case 1 (ai ∨ bi ≤ 6(ai ∧ bi) for some i ∈ {1, 2, . . . ,m+ 1}). Note that

ai + bi = (ai ∨ bi) + (ai ∧ bi) ≤ 7(ai ∧ bi).

Without loss of generality we can assume that i = 1. Then

m+1∏
i=1

ai +

m+1∏
i=1

bi ≥ (a1 ∧ b1)
(m+1∏

i=2

ai +

m+1∏
i=2

bi

)
and hence

m+1∏
i=1

(ai + bi) = (a1 + b1)
m+1∏
i=2

(ai + bi) ≤ (a1 + b1)9
m

(m+1∏
i=2

ai +
m+1∏
i=2

bi

)

≤ 7(a1 ∧ b1)9
m

(m+1∏
i=2

ai +
m+1∏
i=2

bi

)
< 9m+1

(m+1∏
i=1

ai +
m+1∏
i=1

bi

)
,

as required.

Case 2 (ai∨bi ≥ 6(ai∧bi) for all i ∈ {1, 2, . . . ,m+1}). Without loss of generality we
can assume that a1 is the smallest of the numbers ai and bi for all i = 1, 2, . . . ,m+ 1.
By (3.8) we then have

bi ≥
1

2
d(x, y) for all i = 1, 2, . . . ,m+ 1.
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Hence
m+1∏
i=1

ai +

m+1∏
i=1

bi ≥
m+1∏
i=1

bi ≥
1

2m+1

[
d(x, y)

]m+1
.

Also, by Lemma 3.2 we have ai + bi ≤ (9/2)d(x, y) for each i. Hence

m+1∏
i=1

(ai + bi) ≤
(9

2

)m+1[
d(x, y)

]m+1
.

Consequently,

m+1∏
i=1

(ai + bi) ≤
(9

2

)m+1[
d(x, y)

]m+1 ≤ 9m+1
(m+1∏

i=1

ai +
m+1∏
i=1

bi

)
,

completing the proof of the lemma. �
We need the following lemma. For K = 1, this lemma was proved in [18] (see

[18, Lemma 3.7]).

Lemma 3.4. Let rij ≥ 0 be real numbers such that rij = rji and rij ≤ K(rik+rjk)
for some K ≥ 1 and for all i, j, k ∈ {1, 2, 3, 4}. Then

√
r12r34 ≤ K(

√
r13r24 +

√
r14r23).

In particular,

r12r34 ≤ 2K2(r13r24 + r14r23) ≤ (2K)2max{r13r24, r14r23}.
Proof. We can assume, without loss of generality, that r13 is the smallest of the
numbers r13, r14, r24, r23 and that r23 ≥ r14. Clearly, it suffices to show that

r12r34 ≤ K2(r13r24 + r14r23 + 2
√
r13r24r14r23).

Equivalently, we need to show that α ≥ 0, where

α = −r12r34 +K2(r13r24 + r14r23 + 2
√
r13r24r14r23).

By the assumptions we have

r12 ≤ Kmin{r13 + r23, r14 + r24} and r34 ≤ Kmin{r13 + r14, r23 + r24}.
If r14 + r24 ≤ r13 + r23, then r23 ≥ r14 + r24 − r13. Since r24 ≥ r13, we obtain

α ≥ −K2(r14 + r24)(r13 + r14) +K2
(
r13r24 + r14(r14 + r24 − r13)

+ 2
√
r13r24r14(r14 + r24 − r13)

)
= 2K2(

√
r13r24r14(r14 + r24 − r13)− r13r14) ≥ 0.

Now suppose that r14 + r24 ≥ r13 + r23. Then r23 ≤ r14 + r24 − r13, and hence

α ≥ −K2(r13+ r23)(r13+ r14)+K2
(
r13r24+ r14r23+2

√
r13r24r14r23

)
= K2f(r23),

where
f(x) = r13r24 + 2

√
r13r24r14

√
x− (r13)

2 − r13r14 − r13x.

The function f(x) is increasing on the interval [r14, r14+r24−r13]. Indeed, for each
x ∈ [r14, r14 + r24 − r13] we have r13x − r24r14 ≤ r13(r14 + r24 − r13) − r24r14 =
(r14 − r13)(r13 − r24) ≤ 0, and hence r13

√
x − √

r13r24r14 ≤ 0. The latter is
equivalent to f ′(x) ≥ 0. Since f(r14) = r13r24 + 2r14

√
r13r24 − (r13)

2 − 2r13r14 =
r13(r24 − r13) + 2r14(

√
r13r24 − r13) ≥ 0, we obtain α ≥ K2f(r23) ≥ K2f(r14) ≥ 0,

completing the proof of the first part. Since (a+b)2 ≤ 2(a2+b2) for all real numbers
a and b, the second part follows. �
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Next, we define a distance function μP : X ×X → [0,+∞) by

(3.12) μP (x, y) =

k∏
i=1

μpi
(x, y) =

k∏
i=1

[
d(x, y) +

√
d(x, pi)d(y, pi)

]
.

Lemma 3.5. For all x, y, z ∈ X we have

μP (x, y) ≤
(27

2

)k(
μP (x, z) + μP (z, y)

)
.

Moreover,

μP (x, y)μP (z, w) ≤ 4
(27

2

)2k

max
{
μP (x, z)μP (y, w), μP (x,w)μP (y, z)

}
.

Proof. Using (3.12) and Lemma 3.3 we have

μP (x, y) =
k∏

i=1

μpi
(x, y) ≤

(3

2

)k k∏
i=1

(
μpi

(x, z) + μpi
(y, z)

)

≤
(3

2

)k

9k
( k∏

i=1

μpi
(x, z) +

k∏
i=1

μpi
(y, z)

)

=
(27

2

)k (
μP (x, z) + μP (y, z)

)
,

completing the proof of the first part. The second part follows from the first part
and Lemma 3.4. �

4. Gromov hyperbolicity of the average

of one-point scale-invariant Cassinian metrics

We begin by showing that each one-point scale-invariant Cassinian metric is
Gromov hyperbolic. Recall that a metric space (X, d) is Gromov hyperbolic if

(4.1) d(x, y) + d(z, v) ≤
[
d(x, z) + d(y, v)

]
∨

[
d(x, v) + d(y, z)

]
+ 2δ

for all v, x, y, z ∈ X and for some δ ≥ 0. The reader is referred to [6, 10, 25] for a
detailed discussion of Gromov hyperbolic metric spaces. Recall that

τ̃p(x, y) ≤ τp(x, y) ≤ τ̃p(x, y) + log 2

for all x, y ∈ X \ {p} (see (2.4)). It follows that if the metric τ̃p satisfies (4.1) with
a constant δ, then the metric τp satisfies (4.1) with a constant δ + log 2.

Lemma 4.1. Let (X, d) be an arbitrary metric space, and let p ∈ X be any point.
Then the space (X \{p}, τ̃p) is Gromov hyperbolic with δ = log 3. In particular, the
space (X \ {p}, τp) is Gromov hyperbolic with δ = log 3 + log 2.

Proof. It suffices to show that τ̃p satisfies (4.1) with δ = log 3. Let x, y, z, v ∈ X\{p}
be arbitrary points. By Lemma 3.1 we have

μp(x, y)μp(z, v) ≤ 9
[
μp(x, z)μp(y, v) ∨ μp(x, v)μp(y, z)

]
or, equivalently,

μp(x, y)μp(z, v)√
d(x, p)d(y, p)d(z, p)d(v, p)

≤ 9

[
μp(x, z)μp(y, v)√

d(x, p)d(y, p)d(z, p)d(v, p)
∨ μp(x, v)μp(y, z)√

d(x, p)d(y, p)d(z, p)d(v, p)

]
.
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The latter implies

(4.2) τ̃p(x, y) + τ̃p(z, v) ≤
[
τ̃p(x, z) + τ̃p(y, v)

]
∨

[
τ̃p(x, v) + τ̃p(y, z)

]
+ 2 log 3,

completing the proof. �

We are now ready to present the main result of the paper. Let (X, d) be any
metric space, and let p1, p2, . . . , pk be any points in X. Put P = {p1, p2, . . . , pk}
and D = X \ {p1, p2, . . . , pk}. We define a new metric τ̂D on D by taking the
simple average of the one-point scale-invariant Cassinian metrics τpi

, i = 1, 2, . . . , k.
Namely, for x, y ∈ D we define

(4.3) τ̂D(x, y) =
1

k

[
τp1

(x, y) + τp2
(x, y) + · · ·+ τpk

(x, y)
]
=

1

k

k∑
i=1

τpi
(x, y).

It is clear that the average of any finitely many metrics is again a metric. We have

(4.4) τ̃D(x, y) ≤ τ̂D(x, y) ≤ τ̃D(x, y) + log 2

for all x, y ∈ D, where

(4.5) τ̃D(x, y) =
1

k

k∑
i=1

τ̃pi
(x, y) =

1

k
log

(
k∏

i=1

μpi
(x, y)√

d(x, pi)d(y, pi)

)
.

Theorem 4.2. The space (D, τ̂D) is Gromov hyperbolic with δ = 3 log 3+ log 2. In
particular, if (X, d) is Ptolemaic, then the space (D, τ̃D) is Gromov hyperbolic with
δ = 3 log 3.

Proof. It suffices to show that for all x, y, z, w ∈ D we have

τ̃D(x, y) + τ̃D(z, w) ≤ max
{
τ̃D(x, z) + τ̃D(y, w), τ̃D(x,w) + τ̃D(y, z)

}
+ 6 log 3.

Using Lemma 3.5 we obtain

τ̃D(x, y) + τ̃D(z, w) =
1

k
log

(
k∏

i=1

μpi
(x, y)μpi

(z, w)√
d(x, pi)d(y, pi)d(z, pi)d(w, pi)

)

=
1

k
log

( ∏k
i=1 μpi

(x, y)
∏k

i=1 μpi
(z, w)∏k

i=1

√
d(x, pi)d(y, pi)d(z, pi)d(w, pi)

)

=
1

k
log

(
μP (x, y)μP (z, w)∏k

i=1

√
d(x, pi)d(y, pi)d(z, pi)d(w, pi)

)

≤ 1

k
log

(
4(27/2)2k max

{
μP (x, z)μP (y, w), μP (x,w)μP (y, z)

}
∏k

i=1

√
d(x, pi)d(y, pi)d(z, pi)d(w, pi)

)

=
1

k
log

(
max

{
μP (x, z)μP (y, w), μP (x,w)μP (y, z)

}
∏k

i=1

√
d(x, pi)d(y, pi)d(z, pi)d(w, pi)

)
+ 2 log(27/2) +

1

k
log 4

= max
{
τ̃D(x, z) + τ̃D(y, w), τ̃D(x,w) + τ̃D(y, z)

}
+ 2(log(27/2) +

1

k
log 2)

≤ max
{
τ̃D(x, z) + τ̃D(y, w), τ̃D(x,w) + τ̃D(y, z)

}
+ 6 log 3,

completing the proof. �

Definition 4.3. In the context of a general metric space (X, d), the metric τ̂D will
be referred to as the average scale-invariant Cassinian metric.
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We end the paper with the following example that shows that the sum of two
Gromov hyperbolic metrics is not, in general, Gromov hyperbolic. Consider the
two-dimensional Euclidean space R

2 equipped with the Euclidean metric | − |. For
x ∈ R

2 we write x = (x1, x2). Define metrics d1 and d2 on R
2 by

d1(x, y) = |x1−y1|+tan−1(|x2−y2|) and d2(x, y) = |x2−y2|+tan−1(|x1−y1|).

Clearly, both d1 and d2 are nonnegative and symmetric, and dm(x, y) = 0 (m = 1, 2)
if and only if x = y. Since tan−1 is an increasing and concave function on [0,∞),
we see that both d1 and d2 obey the triangle inequality. Thus, d1 and d2 are indeed
metrics on R

2.

Lemma 4.4. The spaces (R2, d1) and (R2, d2) are Gromov hyperbolic with δ = π/2,
but the space (R2, s), d = d1 + d2, is not Gromov hyperbolic.

Proof. Due to the similarity between d1 and d2 it is enough to show that (R2, d1)
is Gromov hyperbolic with δ = π/2. First, observe that the Euclidean distance on
R is Gromov hyperbolic with δ = 0. That is, for all p, q, r, t ∈ R, we have

(4.6) |p− q|+ |r − t| ≤
[
|p− r|+ |q − t|

]
∨

[
|p− t|+ |q − r|

]
.

Let x = (x1, x2), y = (y1, y2), z = (z1, z2), and v = (v1, v2) be arbitrary points
in R

2. Using (4.6) along with the fact that tan−1(a) < π/2 for all a ∈ [0,+∞), we
obtain

d1(x, y) + d1(z, v) = |x1 − y1|+ |z1 − v1|+ tan−1(|x2 − y2|) + tan−1(|z2 − v2|)

≤ |x1 − y1|+ |z1 − v1|+
π

2
+

π

2

≤
[
|x1 − z1|+ |y1 − v1|

]
∨

[
|x1 − v1|+ |y1 − z1|

]
+ 2 · π

2

≤
[
d1(x, z) + d1(y, v)

]
∨

[
d1(x, v) + d1(y, z)

]
+ 2 · π

2
,

completing the proof of the first part.
Next, we show that (R2, d) is not Gromov hyperbolic. Observe that d is roughly

similar to the taxicab metric. That is,

(4.7) dT (x, y) ≤ d(x, y) ≤ dT (x, y) + π for all x, y ∈ R
2.

Here dT is the taxicab metric defined by dT (x, y) = |x1−y1|+ |x2−y2|. It is known
that the taxicab metric is not Gromov hyperbolic. Indeed, for t > 0 and

x = (0, 0), y = (t, t), z = (0, t), v = (t, 0)

we have

dT (x, y) + dT (z, v) = 2t, dT (x, z) + dT (y, v) = t, and dT (x, v) + dT (y, z) = t.

Hence there exist no δ ≥ 0 such that

dT (x, y) + dT (z, v) ≤
[
dT (x, z) + dT (y, v)

]
∨

[
dT (x, v) + dT (y, z)

]
+ 2δ

for all t > 0. Finally, it follows from (4.7) that the space (R2, d) is not Gromov
hyperbolic, completing the proof. �
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Vol. II, Eur. Math. Soc., Zürich, 2006, pp. 1349–1373. MR2275649

[4] Mario Bonk, Juha Heinonen, and Pekka Koskela, Uniformizing Gromov hyperbolic spaces,
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