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A LOCALLY HYPERBOLIC 3-MANIFOLD

THAT IS NOT HYPERBOLIC

TOMMASO CREMASCHI

(Communicated by David Futer)

Abstract. We construct a locally hyperbolic 3-manifold M∞ such that
π1(M∞) has no divisible subgroup. We then show that M∞ is not home-
omorphic to any complete hyperbolic manifold. This answers a question of
Agol.

Introduction

Throughout this paper, M is always an oriented, aspherical 3-manifold. A 3-
manifold M is hyperbolizable if its interior is homeomorphic to H

3/
Γ for Γ �

Isom(H3) a discrete, torsion free subgroup. An irreducible 3-manifold M is of
finite-type if π1(M) is finitely generated, and we say it is of infinite-type otherwise.
By Geometrization ([20–22]) and Tameness ([1, 6]) a finite type 3-manifold M is
hyperbolizable if and only if M is the interior of a compact 3-manifold M that is
atoroidal and with non-finite π1(M). On the other hand, if M is of infinite type not
much is known, and we are very far from a complete topological characterization.
Nevertheless, some interesting examples of these manifolds have been constructed
in [5, 28]. What we do know are necessary conditions for a manifold of infinite

type to be hyperbolizable. If M is hyperbolizable, then M ∼= H
3/

Γ. Hence by

discreteness of Γ and the classification of isometries of H3 we have that no element
γ ∈ Γ is divisible ([10, Lemma 3.2]). Here, γ ∈ Γ is divisible if there are infinitely
many α ∈ π1(M) and n ∈ N such that: γ = αn. We say that a manifold M is locally
hyperbolic if every cover N � M with π1(N) finitely generated is hyperbolizable.
Thus, local hyperbolicity and having no divisible subgroups in π1 are necessary
conditions. In [9, 18] Agol asks whether these conditions could be sufficient for
hyperbolization:

Question (Agol). Is there a 3-dimensional manifold M with no divisible elements
in π1(M) that is locally hyperbolic but not hyperbolic?

We give a positive answer:

Theorem 1. There exists a locally hyperbolic 3-manifold with no divisible subgroups
in its fundamental group that does not admit any complete hyperbolic metric.
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Outline of the proof. The manifold M∞ is a thickening of the 2-complex obtained
by gluing to an infinite annulus A countably many copies of a genus two surface
{Σi}i∈Z along a fixed separating curve γ such that the i-th copy Σi is glued to
S1×{i}. The manifold M∞ covers a compact non-atoroidal manifold M containing
an incompressible two-sided surface Σ. Since π1(M∞) � π1(M) and M is Haken
by [25] we have that π1(M∞) has no divisible elements. By construction M∞ has
countably many embedded genus two surfaces {Σi}i∈Z that project down to Σ. By
a surgery argument it can be shown that M∞ is atoroidal. Moreover, if we consider
the lifts Σ−i,Σi, they co-bound a submanifold Mi that is hyperbolizable, and we
will use the Mi to show that M∞ is locally hyperbolic (see Lemma 2.1). Thus, M∞
satisfies the conditions of Agol’s question.

The obstruction to hyperbolicity arises from the lift A of the essential torus T .
The lift A is an open annulus such that the intersection with all Mi is an embedded
essential annulus Ai

.
= A ∩ Mi with boundaries in Σ±i. The surfaces Σ±i in the

boundaries of the Mi have the important property that they have no homotopic
essential subsurfaces except for the one induced by A. This gives us the property
that both ends of A see an ‘infinite’ amount of topology. This is in sharp contrast
with finite type hyperbolic manifolds in which, by Tameness, every such annulus
only sees a finite amount of topology.

In future work we will give a complete topological characterization of hyperboliz-
able 3-manifolds for a class of infinite type 3-manifolds. This class contains M∞
and the example of Souto-Stover [28] of a hyperbolizable Cantor set in S3.

Notation. We use � for homotopic, and by π0(X) we intend the connected com-
ponents of X. With Σg,k we denote the genus g orientable surface with k boundary
components. By N ↪→ M we denote embeddings, while S � M denotes immer-
sions.

1. Background

We now recall some facts and definitions about the topology of 3-manifolds; more
details can be found in [14–16].

An orientable 3-manifold M is said to be irreducible if every embedded sphere
S2 bounds a 3-ball. A map between manifolds is said to be proper if it sends
boundaries to boundaries and pre-images of compact sets are compact. We say
that a connected properly immersed surface S � M is π1-injective if the induced
map on the fundamental groups is injective. Furthermore, if S ↪→ M is embedded
and π1-injective we say that it is incompressible. If S ↪→ M is a non-π1-injective
two-sided surface by the Loop Theorem we have that there is a compressing disk
D ↪→ M such that ∂D = D ∩ S and ∂D is non-trivial in π1(S).

An irreducible 3-manifold (M,∂M) is said to have incompressible boundary if
every map (D2, ∂D2) ↪→ (M,∂M) is homotopic via a map of pairs into ∂M .
Therefore, (M,∂M) has incompressible boundary if and only if each component
S ∈ π0(∂M) is incompressible, that is, π1-injective. An orientable, irreducible, and
compact 3-manifold is called Haken if it contains a two-sided π1-injective surface.
A 3-manifold is said to be acylindrical if every map (S1× I, ∂(S1× I)) → (M,∂M)
can be homotoped into the boundary via maps of pairs.

Definition 1.1. A 3-manifold M is said to be tame if it is homeomorphic to the
interior of a compact 3-manifold M .
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Even 3-manifolds that are homotopy equivalent to compact manifolds need not
be tame. For example, the Whitehead manifold [31] is homotopy equivalent to R

3

but is not homeomorphic to it.

Definition 1.2. We say that a codimension zero submanifold N
ι
↪→ M forms a

Scott core if the inclusion map ι∗ is a homotopy equivalence.

By [12, 23, 24] given an orientable irreducible 3-manifold M with finitely gener-
ated fundamental group, a Scott core exists and is unique up to homeomorphism.

Let M be a tame 3-manifold. Then given a Scott core C ↪→ M ⊆ M with
incompressible boundary we have that, by Waldhausen’s cobordism theorem [30],

every component of M \ C is a product submanifold homeomorphic to S × I for
S ∈ π0(∂C).

Definition 1.3. Given a core C ↪→ M we say that an end E ⊆ M \ C is tame if it
is homeomorphic to S × [0,∞) for S = ∂E.

A core C ⊆ M gives us a bijective correspondence between the ends of M and
the components of ∂C. We say that a surface S ∈ π0(∂C) faces the end E if E is

the component of M \ C with boundary S. It is a simple observation that if an end
E facing S is exhausted by submanifolds homeomorphic to S× I, then it is a tame
end.

2. Proof of Theorem 1

Consider a surface of genus two Σ and denote by α a separating curve that splits
it into two punctured tori. To Σ × I we glue a thickened annulus C

.
=(S1 × I) × I

so that S1 × I × {i} is glued to a regular neighbourhood of α× i, for i = 0, 1. We
call the resulting manifold M (see Figure 1).

Σ
α × {1}

α × {0}

Figure 1. The manifold M .
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The manifold M is not hyperbolic since it contains a non-boundary parallel
essential torus T induced by the cylinder C. Moreover, M has a surjection p
onto S1 obtained by projecting the surfaces in Σ × I onto I and also mapping
the cylinder onto an interval. We denote by H the kernel of the surjection map
p∗ : π1(M) � π1(S

1).
Consider an infinite cyclic cover M∞ of M corresponding to the subgroup H.

The manifold M∞ is an infinite collection of {Σ × I}i∈Z glued to each other via
annuli along the separating curves α × {0, 1}. Therefore, we have the covering in
Figure 2:

Σi Σi+1 Σi+2

Σ

Figure 2. The infinite cyclic cover.

where the Σi are distinct lifts of Σ and so are incompressible in M∞. Since π1(M∞)
is a subgroup of π1(M) and M is Haken (M contains the incompressible surface Σ)
by [25] we have that π1(M) has no divisible elements; thus π1(M∞) has no divisible
subgroups as well.

Lemma 2.1. The manifold M∞ is locally hyperbolic.

Proof. We claim that M∞ is atoroidal and exhausted by hyperbolizable manifolds.
Let T 2 ↪→ M∞ be an essential torus with image T . Between the surfaces Σi and
Σi+1 we have incompressible annuli Ci that separate them; see Figure 3. Since T is
compact it intersects at most finitely many {Ci}. Moreover, up to isotopy we can
assume that T is transverse to all Ci and it minimizes |π0(T ∩

⋃
Ci)|. If T does

not intersect any Ci we have that it is contained in a submanifold homeomorphic
to Σ × I which is atoroidal, and so T wasn’t essential.

Since both Ci and T are incompressible we can isotope T so that the components
of the intersection T ∩ Ci are essential simple closed curves. Thus, T is divided by⋃

i T ∩Ci into finitely many parallel annuli, and T ∩Ci are disjoint core curves for
Ci. Consider Ck such that T ∩ Ck 	= ∅ and ∀n ≥ k : T ∩ Cn = ∅. Then T cannot
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Σi
Σi+1 Σi+2

Ci Ci+1

Figure 3

intersect Ck in only one component, so it has to come back through Ck. Thus,
we have an annulus A ⊂ T that has both boundaries in Ck and is contained in a
submanifold of M∞ homeomorphic to Σk+1 × I. The annulus A gives an isotopy
between isotopic curves in ∂ (Σk+1 × I) and is therefore boundary parallel. Hence,
by an isotopy of T we can reduce |π0(T ∩

⋃
Ci)|, contradicting the fact that it was

minimal and non-zero.
We define the submanifold of M∞ co-bounded by Σk and Σ−k by Mk. Since M∞

is atoroidal so are the Mk. Moreover, since the Mk are compact manifolds with
infinite π1 they are hyperbolizable by Thurston’s Hyperbolization Theorem [17].

We now want to prove that M∞ is locally hyperbolic. To do so it suffices to show
that given any finitely generated H � π1(M∞) the cover M∞(H) corresponding
to H factors through a cover N � M∞ that is hyperbolizable. Let γ1, . . . , γn ⊂
M∞ be loops generating H. Since the Mk exhaust M∞ we can find some k ∈ N

such that {γi}i≤n ⊂ Mk; hence the cover corresponding to H factors through the
cover induced by π1(Mk). We now want to show that the cover M∞(k) of M∞
corresponding to π1(Mk) is hyperbolizable.

Since π : M∞ � M is the infinite cyclic cover of M we have that M∞(k) is the
same as the cover of M corresponding to π∗(π1(Mk)). The resolution of the Tame-
ness [1,6] and the Geometrization conjecture [20–22] imply Simon’s conjecture, that
is: covers of compact irreducible 3-manifolds with finitely generated fundamental
groups are tame [8, 26]. Therefore, since M is compact by Simon’s conjecture we
have that M∞(k) is tame. The submanifold Mk ↪→ M∞ lifts homeomorphically to

M̃k ↪→ M∞(k). By Whitehead’s theorem [13] the inclusion is a homotopy equiva-

lence; hence M̃k forms a Scott core for M∞(k). Thus, since ∂M̃k is incompressible
and M∞(k) is tame we have that M∞(k) ∼= int(Mk), and so it is hyperbolizable. �
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In the infinite cyclic cover M∞ the essential torus T lifts to a π1-injective annulus
A that is properly embedded: A = γ × R ↪→ M∞ for γ the lift of the curve
α ↪→ Σ ⊆ M .

Remark 2.2. Consider two distinct lifts Σi,Σj of the embedded surface Σ ↪→ M .
Then we have that the only essential subsurface of Σi homotopic to a subsurface of
Σj is a neighbourhood of γ. This is because by construction the only curve of Σi

homotopic into Σj is γ.

Given a hyperbolic 3-manifold M , a useful simplicial hyperbolic surface is a
surface S with a 1-vertex triangulation T , a preferred edge e, and a map f : S → M ,
such that:

(1) f(e) is a geodesic in M ;
(2) every edge of T is mapped to a geodesic segment in M ;
(3) the restriction of f to every face of T is a totally geodesic immersion.

By [3, 7] every π1-injective map f : S → M with a 1-vertex triangulation with
a preferred edge can be homotoped so that it becomes a useful simplicial surface.
Moreover, with the path metric induced by M a useful simplicial surface is nega-
tively curved and the map becomes 1-Lipschitz.

Proposition 2.3. The manifold M∞ is not hyperbolic.

Proof. The manifold M∞ has two non-tame ends E±, and the connected compo-
nents of the complement of a region co-bounded by distinct lifts of Σ give neigh-
bourhoods of these ends. Let A be the annulus obtained by the lift of the essential
torus T ↪→ M . The ends E± of M∞ are in bijection with the ends A± of the annu-
lus A. Let γ be a simple closed curve generating π1(A). Denote by {Σi}i∈Z ⊂ M∞
the lifts of Σ ⊂ M and let {Σ±

i }i∈Z be the lifts of the punctured tori that form the
complement of α in Σ ⊆ M . The proof is by contradiction, and it will follow by
showing that γ is neither homotopic to a geodesic in M∞ nor out of a cusp.

Step 1. We want to show that the curve γ cannot be represented by a hyperbolic
element.

By contradiction assume that γ is represented by a hyperbolic element and let
γ be the unique geodesic representative of γ in M∞. Consider the incompressible
embeddings fi : Σ2 ↪→ M∞ with fi(Σ2) = Σi and let γi ⊂ Σi be the simple
closed curve homotopic to γ. By picking a 1-vertex triangulation of Σi where γi is
represented by a preferred edge we can realize each (fi,Σi) by a useful simplicial
hyperbolic surface gi : Si → M∞ with gi(Si) � Σi (see [3, 7]). By an abuse of
notation we will also use Si to denote gi(Si). Since all the Si realize γ as a geodesic
we see the configuration in M∞; see Figure 4.

On the simplicial hyperbolic surfaces Si a maximal one-sided collar neighbour-
hood of γ has area bounded by the total area of Si. Since the simplicial hyperbolic
surfaces are all genus two by Gauss-Bonnet we have that A(Si) ≤ 2π|χ(Si)| = 4π.
Therefore, the radius of a one-sided collar neighbourhood is uniformly bounded by
some constant K = K(χ(Σ2), 	(γ)) < ∞. Then, for any ξ > 0 the K + ξ bi-collar
neighbourhood of γ in the simplicial hyperbolic surface Si is not embedded and
contains a 4-punctured sphere. Since simplicial hyperbolic surfaces are 1-Lipschitz
the 4-punctured sphere is contained in a K + ξ neighbourhood C of γ; thus it
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Σi Σi+1 Σi+2

γSi Si+1

Figure 4. The simplicial hyperbolic surfaces Si exiting the ends.

lies in some fixed set Mh. Therefore for every |n| > h we have that Σ±n has an
essential subsurface, homeomorphic to a 4-punctured sphere, homotopic into Σ±h

respectively. But this contradicts Remark 2.2.

Step 2. We now show that γ cannot be represented by a parabolic element.
Let ε > 0 be less than the 3-dimensional Margulis constant μ3 [2] and let P be a

cusp neighbourhood of γ such that the horocycle representing γ in ∂P has length
ε. The cusp neighbourhood P is contained in one end E of M∞. Without loss of
generality we can assume that P is not contained in the end E+ of M∞.

Let {Σ+
i }i≥0 ⊂ {Σi}i≥0 be the collection of subsurfaces of the Σi formed by the

punctured tori with boundary γi that are exiting E+. By picking an ideal trian-
gulation of Σi where the cusp γi is the only vertex we can realize the embeddings
fi : Σ+

i ↪→ M∞ by simplicial hyperbolic surfaces (gi, S
+
i ) in which γi is sent to the

cusp [3, 7]. The {S+
i }i≥0 are all punctured tori with cusp represented by γ. See

Figure 5.
All simplicial hyperbolic surfaces S+

i intersect ∂P in a horocycle fi(ci) of length
	(fi(ci)) = ε. Therefore, in each S+

i the horocycle ci has a maximally embedded one-
sided collar whose radius is bounded by some constant K = K(ε, 2π). Then for any
ξ > 0, a K+ξ neighbourhood of ci in S+

i contains a pair of pants Pi ⊂ S+
i that has

ci as a boundary component. Since simplicial hyperbolic surfaces are 1-Lipschitz
the pair of pants Pi are contained in a K+ξ neighbourhood of fi(ci) in M∞. Thus,
the Σi have pairs of pants that are homotopic a uniformly bounded distance from
∂P . Let k ∈ N be minimal such that Σk lies outside a K + ξ neighbourhood of
∂P . Then for any j > k we have that Σj has a pair of pants homotopic into Σk,
contradicting Remark 2.2.

�
This concludes the proof of Theorem 1.
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Σi
Σi+1

Σi+2

S+
i

S+
i+1

Figure 5. The ε-thin part is in grey.
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