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(Communicated by Alexander Iosevich)

Abstract. In this paper, we show that non-symmetric convex polytopes can-
not serve as a window function to produce a Gabor orthonormal basis by any
time-frequency sets.

1. Introduction

Let Ω be a subset of Rd with |Ω| > 0 (| · | denotes the Lebesgue measure). If Γ
is a discrete subset of Rd, we write EΓ for the set of exponentials {eγ(x) : γ ∈ Γ}
where eγ(x) := e2πi〈γ,x〉 for x ∈ R

d.

Definition 1.1. Let g �= 0 be a function in L2(Rd), and let Λ = {(t, λ) : t, λ ∈ R
d}

be a discrete subset of R
2d. A Gabor system is a collection of translations and

modulations of the function g by Λ:

(1.1) G(g,Λ) := {eλ(x)g(x− t) : (t, λ) ∈ Λ}.
In particular, a measurable set Ω ⊆ R

d is called a Gabor orthonormal basis set
(GONB set) if G(|Ω|−1/2χΩ,Λ) forms an orthonormal basis for L2(R2d).

We call g and Λ the window function and the time-frequency set, respectively. Λ
is said to be separable if there exist sets J and Γ on R

d such that Λ = J × Γ.
In recent years, determining a pair (g,Λ) such that G(g,Λ) arises as a frame or

orthonormal basis has received much attention and many important cases have been
solved. Yet, there is still an abundance of mysteries and unexpected results within
this classification (for example, see [Grö01, Grö14]). Concerning the structure of
GONB sets, the following problem may give us some positive insight. It was recently
proposed and studied by several authors [AAK17, IM17,GLW15,LM].

Problem 1.2 (Fuglede–Gabor problem). Suppose Ω ⊆ R
d is a GONB set. Then

(1) (Spectrality) there exists Γ such that EΓ forms an orthonormal basis for
L2(Ω), and
(2) (Tiling) there exists a discrete set J such that Rd is the almost disjoint
union of Ω + t, t ∈ J . Equivalently,∑

t∈J
χΩ(x− t) = 1 a.e.
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In general, sets satisfying (1) and (2) are called spectral sets and translational
tiles, respectively. Historically, the first related version of the Fuglede–Gabor prob-
lem was introduced in [LW03]. They conjectured that if the window functions were
compactly supported and the time-frequency sets were separable, then the con-
clusion of the Fuglede–Gabor problem holds. Due to the separability condition,
the problem was settled by [DL14] if the window was nonnegative. Our interest
is the nonseparable case. In fact, considering standard objects such as the unit
cube [0, 1]d, there exist uncountably many distinct (up to translation) nonsepara-
ble time-frequency sets Λ such that G(χ[0,1]d ,Λ) forms an orthonormal basis if d ≥ 2
(see [GLW15]).

The Fuglede–Gabor problem was motivated by a related conjecture called the
spectral set conjecture:

Conjecture 1.3 (Spectral set conjecture). A set Ω is a spectral set if and only if
it is a translational tile.

This conjecture was introduced by Fuglede [Fug74] during his studies of exten-
sions of commuting self-adjoint differential operators to dense subspaces of L2(Ω).
His conjecture was disproven in one direction by Tao [Tao03] for d ≥ 5 and then in
both directions by Kolountzakis and Matolcsi [KM06] for d ≥ 3. Despite this, how-
ever, the conjecture was verified in many significant cases including the following:

(1) Ω tiles by a lattice [Fug74],
(2) Ω is a union of two intervals on R

1 [Lab01],
(3) Ω is a convex body with a point of positive Gaussian curvature [IKT01],
(4) Ω is a non-symmetric convex body [Kol00].

The first three cases have recently been partially resolved in the Fuglede–Gabor
problem (see [LM] for case (1), [AAK17] for case (2), and [IM17] for case (3)).
Each case used machinery similar to its Fuglede counterpart’s, but due to the extra
consideration of the set Ω ∩ (Ω + t), none of the cases were proven in their full
generality.

In this paper, we consider the fourth case with non-symmetric convex polytopes.
Our main result is the following.

Theorem 1.4. Let Ω be a non-symmetric convex polytope in R
d. Then Ω is not a

GONB set. In other words, there cannot exist a Λ such that G(|Ω|−1/2χΩ,Λ) forms
an orthonormal basis.

We are unable to generalize the proof in [Kol00] to obtain a more general result
for convex bodies (see Remark 3.3). Instead, we will follow a similar approach by
Greenfeld and Lev [GL17, Theorem 3.1] (originally from [KP02]). To fully utilize
the same line of thought, we will first consider the intersection of the polytopes
Ω and its translate Ω + t. We must assure that for a sufficiently small vector t,
Ω∩ (Ω+ t) will remain non-symmetric with the (d− 1)-volume of their facets stay-
ing continuous (Theorem 2.5). After that, we apply an analogous argument from
Greenfeld–Lev twice on the frequency and time axes to obtain a similar contradic-
tion.

2. Lemmas on polytopes

In this section, we study the structure of convex polytopes. The main references
will be taken from [Gru07,Sch13]. Let us recall some terminology.
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Let Vα be the α-dimensional volume function on R
d. A (closed) half-space H

is defined by {x ∈ R
d : 〈a, x〉 ≤ b}, where a is the normal vector to H. A convex

polyhedron is a finite intersection of closed half-spaces; thus, a convex polyhedron
Ω is a closed set admitting a half-space representation

(2.1) Ω = {x ∈ R
d : 〈ai, x〉 ≤ bi, ∀i = 1, . . . , n} =

n⋂
i=1

Hi,

where Hi = {x ∈ R
d : 〈ai, x〉 ≤ bi}. A facet Fi of Ω is the intersection of Ω with the

boundary of a half-space in its half-space representation; namely, Fi = (∂Hi) ∩ Ω
such that Vd−1(Fi) > 0.

A convex polytope is the convex hull of finitely many points. It is well known
that a convex polytope is equivalent to a bounded polyhedron. A convex polytope
is (centrally) symmetric if there exists a point x ∈ R

d such that

x− Ω = Ω− x.

If F = (∂H) ∩ Ω is a facet of Ω, then F ′ = (∂H ′) ∩ Ω is the parallel of F if
(∂H)∩(∂H ′) = ∅ (i.e., H and H ′ share unit normal vectors in opposing directions).
By convention, we take ∅ to be the parallel facet of F if a parallel facet does not
exist. The following theorem fully characterizes symmetric convex polytopes in
terms of parallel facets and volume (see [Gru07, Corollary 18.1]).

Theorem 2.1 (Minkowski’s Theorem). A convex polytope is symmetric if and
only if for every facet F ⊂ Ω, there exists a parallel facet F ′ such that Vd−1(F

′) =
Vd−1(F ).

Let C := C[Rd] be the set of compact convex sets on R
d, and let Bδ(x) be the

open ball of radius δ centered at x. We will denote by P := P[Rd] the set of all
polytopes in C.

For any E,F ∈ C, the Hausdorff metric of E and F is defined as

dH(E,F ) = inf{δ : E ⊂ F δ, and F ⊂ Eδ},
where Eδ :=

⋃
x∈E Bδ(x) and similarly for F δ. The metric space (C, dH) is com-

plete.
Now we remark that in general the volume function is not continuous for general

compact sets.

Example 2.2. Let T0 := [v1; v2; v3] denote a 2-simplex in R
2 with unit side lengths,

and let Tn := [v1; v2; (1/n)v3+(1− 1/n)v1] for n > 0. Tn converges to the line seg-
ment L joining v1, v2, but of particular interest we see the non-convex sequence ∂Tn

converges to the line segment L joining v1, v2. By triangle inequality, V1(∂Tn) ≥ 2
while V1(L) = 1, so V1(∂Tn) cannot converge to V1(L).

Nonetheless, Vd−1 is continuous on C. A quick way to see this can be found in
[Gru07, pp. 104–105]. In summary, up to a constant, Vd−1 computes the surface
area of a facet, and according to [Gru07, pp. 104–105],

Vd−1(C) = kdW1(C),

where W1 is the quermassintegral of C and kd > 0 is some constant dependent on
the dimension. It is thus a continuous function on (C, dH) (by [Gru07, Theorem
6.13]); hence,

(2.2) lim
n→∞

dH(En, F ) ⇒ lim
n→∞

Vd−1(En) = Vd−1(F ).
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Our goal now is to show that Ωt := Ω ∩ (Ω + t) is non-symmetric for t small if
Ω is non-symmetric.

Lemma 2.3. Let t ∈ R
d, and let Ω be given by (2.1). Then Ωt admits a represen-

tation

(2.3) Ωt =

n⋂
i=1

Mi,

where

Mi := Mi(t) = {x ∈ R
d : 〈ai, x〉 ≤ mi} and mi := min{bi, bi + 〈ai, t〉}.

Proof. Let Ω =
⋂n

i=1 Hi, where Hi = {x : 〈ai, x〉 ≤ bi}. We have

Hi + t = {x+ t : 〈ai, x〉 ≤ bi} = {x : 〈ai, x− t〉 ≤ bi} = {x : 〈ai, x〉 ≤ bi + 〈ai, t〉}.

Let mi be defined as above. Then it follows immediately that

Hi ∩ (Hi + t) = {x : 〈ai, x〉 ≤ mi} = Mi.

Since

Ωt = Ω ∩ (Ω + t) =

(
n⋂

i=1

Hi

)
∩
(

n⋂
i=1

Hi + t

)
=

n⋂
i=1

(Hi ∩ (Hi + t)) =
n⋂

i=1

Mi,

this implies (2.3). �

The following lemma shows that the facet in Ωt converges to the original facet
Ω in the Hausdorff metric.

Lemma 2.4. Let Ω ∈ P, and let F = (∂H) ∩ Ω be a facet of Ω. Write H = {x ∈
R

d : 〈a, x〉 ≤ b} and let M(t) be as defined in Lemma 2.3 for H. Then the facets
F (t) = (∂M(t)) ∩ Ωt converge to F as t → 0.

Proof. By [Sch13, Theorem 1.8.8], a sequence of compact convex sets Ki converges
to K if and only if

(1) every point x ∈ K is the limit of some sequence of points {xi}, xi ∈ Ki;
(2) for any convergent sequences (xij ) with xij ∈ Kij , the limit of xij belongs

to K.

(1) is clear since x + t → x as |t| → 0 and x + t ∈ F (t). For (2), choose any
convergent sequence (xti) with xti ∈ F (ti) and denote its limit by x. Then Lemma
2.3 implies that

∂M(t) = {x : 〈a, x〉 = min{b, b+ 〈a, t〉}}.
Now, xti ∈ ∂M(ti), so 〈a, xti〉 = min{b, b + 〈a, ti〉}. But ti converges to 0 by the
continuity of 〈·, ·〉 and min, so 〈a, x〉 = b. In other words, x ∈ ∂H. On the other
hand, x ∈ Ωt = Ω ∩ (Ω + t) ⊂ Ω, so x ∈ F . This completes the proof. �

Theorem 2.5. Suppose Ω is a non-symmetric polytope. Then there exists ε > 0
such that for all |t| ≤ ε, Ωt is non-symmetric. More specifically, given a non-
symmetric facet F in Ω, F (t) is a non-symmetric facet for Ωt for |t| ≤ ε.

Proof. It suffices to show the second statement since then the first statement will
follow from Minkowski’s Theorem.
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Let F be a non-symmetric facet of Ω, and choose a facet F ′ parallel to F with
Vd−1(F ) �= Vd−1(F

′). By Minkowski’s Theorem, such a facet is guaranteed to
exist. Define

V (t) := |Vd−1(F (t))− Vd−1(F
′(t))|.

By Lemma 2.4 and (2.2), Vd−1(F (t)) and Vd−1(F
′(t)) are continuous at 0, hence

V (t) is continuous at 0. So

V (0) = |Vd−1(F (0))−Vd−1(F
′(0))| = |Vd−1(F )−Vd−1(F

′)| > 0,

thus we can choose some ε > 0 such that V (t) > 0 for |t| < ε. Choosing ε smaller,
this holds true for the compact ball |t| ≤ ε. Thus

|Vd−1(F (t))−Vd−1(F
′(t))| = V (t) > 0.

This complete the proof. �

We remark that the condition on |t| cannot be removed. The following example
shows that an intersection of the non-symmetric polytopes and its translates may
become symmetric for some translations.

Example 2.6. Let Ω be the polytope with five edges and vertices given by (0, 0),
(2, 0), (2, 2), (1, 2), and (0, 1). It is a square with the top left-hand corner removed
and it is clearly non-symmetric. Consider t = (−1,−1). Then Ω∩ (Ω+ t) becomes
a square with vertices (0, 0), (1, 0), (0, 1), and (1, 1), so it is symmetric. This shows
that in the above theorem, one cannot remove the condition that |t| is sufficiently
small.

3. Proof of the main theorem

Let Ω be the convex polytope on R
d. We denote by σF (x) the surface measure on

the facet F of Ω. Let nF denote the outward unit normal to the facet F on Ω. From
Lemma 2.3, the corresponding facet F (t) of Ωt = Ω∩(Ω+t) shares the same normal
vector. The following lemma is a variant of Greenfeld–Lev [GL17, Lemma 2.7] (the
case t = 0). We show that the lower order term can be bounded, independent of t.

Lemma 3.1. Let A(t) be a facet of Ωt, and let B(t) be the parallel facet to A(t)
of Ωt with outward unit normals e1 and −e1 (B(t) = ∅ if such a parallel facet does
not exist). Then there exists ω := ωΩ > 0, independent of t, such that in the cone

C(ω) := {λ ∈ R
d : |λj | ≤ ω|λ1| for all 2 ≤ j ≤ d}

we have

(3.1) −2πiλ1χ̂Ωt
(λ) = σ̂A(t)(λ)− σ̂B(t)(λ) +Gt(λ)

with

|Gt(λ)| ≤
C

|λ1|
,

for some constant C > 0, independent of t.

Proof. By the divergence theorem (see [GL17, Lemma 2.4]),

−2πiλ1χ̂Ωt
(λ) = σ̂A(t)(λ)− σ̂B(t)(λ) +

∑
〈e1, nF 〉σ̂F (t)(λ),
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where the sum is over all facets F (t) of Ωt except A(t) and B(t). Define Gt(λ) to
be the sum. By [GL17, Lemma 2.6],

(3.2) |σ̂F (t)(λ)| ≤
Vd−2(∂F (t))

2π
· |λ|−1

| sin θλ,nF
| ≤

Vd−2(∂F )

2π
· |λ|−1

| sin θλ,nF
| ,

where θλ,nF
is the angle between λ ∈ R

d\{0}. The second inequality follows from
the fact that the facet F (t) is either empty, a subset of the facet F , or a subset of
the facet F + t, so Vd−2(∂F (t)) ≤ Vd−2(∂F ). If ω is sufficiently small, then for
λ ∈ C(ω), θλ,nF

is bounded away from 0 and π for all nF , so inside the cone C(ω),
summing up all F in (3.2) shows Gt(λ) is bounded by C|λ|−1 as |λ1| → ∞. As nF

does not depend on t, C does not depend on t. �

We now return to the main problem. Let g ∈ L2(Rd). The short time Fourier
transform (STFT) is defined by

Vgg(t, λ) :=

∫
g(x)g(x− t)e−2πi〈λ,x〉dx.

If g = |Ω|−1/2χΩ, we have

(3.3) Vgg(t, λ) = |Ω|−1χ̂Ω∩(Ω+t)(λ) = |Ω|−1χ̂Ωt
(λ).

We observe that a Gabor system G(g,Λ) forms an orthonormal basis if and only if
the following holds:

(1) (Mutual Orthogonality) Λ− Λ ⊂ {(t, λ) : Vgg(t, λ) = 0} and
(2) (Completeness) G(g,Λ) is complete in L2(Rd)

(see [GLW15,AAK17] for a complete derivation). Furthermore, if G(g,Λ) forms an
orthonormal basis, due to the continuity of Vgg at the origin, Λ must be uniformly
discrete, i.e., there exists δ > 0 such that every ball of radius δ intersects Λ at at
most one point. On the other hand, Λ is relatively dense in R

2d in the sense that
there exists R > 0 such that any balls of radius R must intersect Λ since the density
of Λ on R

2d must equal one (see [RS95]).
Let S(r) = {te1 + w : t ∈ R, w ∈ R

d, |w| < r} be the cylinder along the x1-axis.

Lemma 3.2. Suppose Ω is a non-symmetric convex polytope on R
d, and let g =

|Ω|−1/2χΩ. There exist ε > 0, R > 0 and δ > 0 such that

Vgg(t, λ) �= 0 ∀λ ∈ S(2δ) \BR(0)

for all |t| < ε.

Proof. Take ε > 0 from Theorem 2.5, and consider |t| ≤ ε. Let A(t) be the non-
symmetric facet of Ωt and let B(t) be its parallel facet. Using an affine trans-
formation, assume A(t) and B(t) lie on the hyperplanes {x1 = 0} and {x1 = 1}
respectively, and let η := min|t|≤ε |Vd−1(A(t)) − Vd−1(B(t))|. By Theorem 2.5,
η > 0.

We have

σ̂A(t)(λ) = χ̂A(t)(λ2, ..., λd) and σ̂B(t)(λ) = e2πiλ1 χ̂B(t)(λ2, ..., λd)

where χB(t) and χA(t) are the characteristic functions of the orthogonal projections
of B(t) and A(t) onto (x2, ..., xd) respectively. Moreover,

χ̂A(t)(0) = Vd−1(A(t))

χ̂A(t) − χ̂A(0) = χ̂A(t)ΔA(0)
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where Δ is the symmetric difference. Thus we deduce

|χ̂A(t)(λ
′)− χ̂A(0)(λ

′)| ≤ Vd−1(A(t)ΔA(0)) → 0 as t → 0, ∀λ′ ∈ R
d−1,

so σ̂A(t) converges uniformly to σ̂A(0) on R
d−1. Similarly, σ̂B(t) converges uniformly

to σ̂B(0).
Thus, by uniformity, we can choose δ > 0, independent of t, such that

|σ̂A(t)(λ)− σ̂B(t)(λ)| ≥ η

in the cylinder S(2δ). Using (3.3) and Lemma 3.1, we can choose ω > 0 and C > 0,
independent of t, such that

2π|Ω||λ1||Vgg(t, λ)| ≥ η − |Gt(λ)| ≥ η − C

|λ1|
in the cone intersection C(ω) ∩ S(2δ). Taking R large so that S(2δ) \ BR(0) ⊆
C(ω) \BR(0) and

η − C

|λ1|
> 0 on S(2δ) \BR(0),

we see that

Vgg(t, λ) �= 0, λ ∈ S(2δ) \BR(0)

for any |t| < ε. Since the constant C and ω are taken independently of t, R is
independent of t, so we are done. �

We now give the proof for Theorem 1.4.

Proof of Theorem 1.4. We argue by contradiction. Suppose G(g,Λ) forms a Gabor
orthonormal basis, and let ε, δ, and R be as defined in the previous lemma.

Claim. For any τ, x ∈ R
d, card(Λ ∩ [Bε/2(x) × (S(δ) + τ )]) < ∞, where card(·)

denotes cardinality.

Suppose not. As Λ is uniformly discrete, one can find v = (t, λ) and v′ = (t′, λ′) ∈
Λ ∩ [Bε/2(ν) × (S(δ) + τ )] with |λ − λ′| > R. But |t − t′| < ε and λ − λ′ ∈ S(2δ),
thus Lemma 3.2 tells us that we must have

Vgg(t− t′, λ− λ′) �= 0.

This contradicts the mutual orthogonality of Λ. Thus, |λ′ − λ| ≤ R, otherwise,
λ′ − λ ∈ S(2δ) \ BR which implies Vgg(t, λ) �= 0, a contradiction to the mutual
orthogonality. This establishes the claim.

Now since Λ is a relatively dense set, there is a radius δ∗ > 0 such that every
2d-ball of radius δ∗ nontrivially intersects Λ. Consider the set Bd

δ∗(0) × S(δ∗) (d
denotes the d-dimensional ball) covered by finitely many cylinders Bd

ε/2(νi)×(S(δ)+

τj), 1 ≤ i, j ≤ N . Then card(Λ ∩ [Bd
δ∗(0) × S(δ∗)]) < ∞. However, this implies

that Bd
δ∗(0) × S(δ∗) contains a 2d-ball of radius δ∗ that does not intersect Λ, a

contradiction to the relative density. It follows that such Λ does not exist and our
proof is complete. �

Remark 3.3. There is an approach to the Fuglede conjecture used in [Kol00] which
considers the Fourier transform of the function f = |χ̂Ω|2. This transform is equal

to χΩ ∗ χ−Ω, so f̂ has compact support, allowing the use of [Kol00, Theorem 2] to
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obtain a conclusion about the support of the Fourier transform of δΓ (as a tempered
distribution). Considering f = |Vgg|2 on R

2d with g = χΩ,

(|Vgg|)̂(t, ξ) = Vgg(ξ,−t)

(see [Grö14, Equation (11) on page 873]), there is no compactly supported Fourier
transform (since the time side is unbounded), so the method in [Kol00] cannot be
realized without some nontrivial adjustment.
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