NON-SYMMETRIC CONVEX POLYTOPES AND GABOR ORTHONORMAL BASES

RANDOLF CHUNG AND CHUN-KIT LAI

(Communicated by Alexander Iosevich)

Abstract

In this paper, we show that non-symmetric convex polytopes cannot serve as a window function to produce a Gabor orthonormal basis by any time-frequency sets.

1. Introduction

Let Ω be a subset of \mathbb{R}^{d} with $|\Omega|>0(|\cdot|$ denotes the Lebesgue measure). If Γ is a discrete subset of \mathbb{R}^{d}, we write E_{Γ} for the set of exponentials $\left\{e_{\gamma}(x): \gamma \in \Gamma\right\}$ where $e_{\gamma}(x):=e^{2 \pi i\langle\gamma, x\rangle}$ for $x \in \mathbb{R}^{d}$.

Definition 1.1. Let $g \neq 0$ be a function in $L^{2}\left(\mathbb{R}^{d}\right)$, and let $\Lambda=\left\{(t, \lambda): t, \lambda \in \mathbb{R}^{d}\right\}$ be a discrete subset of $\mathbb{R}^{2 d}$. A Gabor system is a collection of translations and modulations of the function g by Λ :

$$
\begin{equation*}
\mathcal{G}(g, \Lambda):=\left\{e_{\lambda}(x) g(x-t):(t, \lambda) \in \Lambda\right\} . \tag{1.1}
\end{equation*}
$$

In particular, a measurable set $\Omega \subseteq \mathbb{R}^{d}$ is called a Gabor orthonormal basis set (GONB set) if $\mathcal{G}\left(|\Omega|^{-1 / 2} \chi_{\Omega}, \Lambda\right)$ forms an orthonormal basis for $L^{2}\left(\mathbb{R}^{2 d}\right)$.

We call g and Λ the window function and the time-frequency set, respectively. Λ is said to be separable if there exist sets \mathcal{J} and Γ on \mathbb{R}^{d} such that $\Lambda=\mathcal{J} \times \Gamma$.

In recent years, determining a pair (g, Λ) such that $\mathcal{G}(g, \Lambda)$ arises as a frame or orthonormal basis has received much attention and many important cases have been solved. Yet, there is still an abundance of mysteries and unexpected results within this classification (for example, see Grö01, Grö14]). Concerning the structure of GONB sets, the following problem may give us some positive insight. It was recently proposed and studied by several authors AAK17, IM17, GLW15, LM.

Problem 1.2 (Fuglede-Gabor problem). Suppose $\Omega \subseteq \mathbb{R}^{d}$ is a GONB set. Then
(1) (Spectrality) there exists Γ such that E_{Γ} forms an orthonormal basis for $L^{2}(\Omega)$, and
(2) (Tiling) there exists a discrete set \mathcal{J} such that \mathbb{R}^{d} is the almost disjoint union of $\Omega+t, t \in \mathcal{J}$. Equivalently,

$$
\sum_{t \in \mathcal{J}} \chi_{\Omega}(x-t)=1 \text { a.e. }
$$

[^0]In general, sets satisfying (1) and (2) are called spectral sets and translational tiles, respectively. Historically, the first related version of the Fuglede-Gabor problem was introduced in LW03. They conjectured that if the window functions were compactly supported and the time-frequency sets were separable, then the conclusion of the Fuglede-Gabor problem holds. Due to the separability condition, the problem was settled by DL14 if the window was nonnegative. Our interest is the nonseparable case. In fact, considering standard objects such as the unit cube $[0,1]^{d}$, there exist uncountably many distinct (up to translation) nonseparable time-frequency sets Λ such that $\mathcal{G}\left(\chi_{[0,1]^{d}}, \Lambda\right)$ forms an orthonormal basis if $d \geq 2$ (see GLW15]).

The Fuglede-Gabor problem was motivated by a related conjecture called the spectral set conjecture:

Conjecture 1.3 (Spectral set conjecture). A set Ω is a spectral set if and only if it is a translational tile.

This conjecture was introduced by Fuglede Fug74 during his studies of extensions of commuting self-adjoint differential operators to dense subspaces of $L^{2}(\Omega)$. His conjecture was disproven in one direction by Tao Tao03] for $d \geq 5$ and then in both directions by Kolountzakis and Matolcsi KM06 for $d \geq 3$. Despite this, however, the conjecture was verified in many significant cases including the following:
(1) Ω tiles by a lattice Fug74,
(2) Ω is a union of two intervals on \mathbb{R}^{1} Lab01,
(3) Ω is a convex body with a point of positive Gaussian curvature IKT01,
(4) Ω is a non-symmetric convex body Kol00.

The first three cases have recently been partially resolved in the Fuglede-Gabor problem (see LM for case (1), AAK17 for case (2), and IM17 for case (3)). Each case used machinery similar to its Fuglede counterpart's, but due to the extra consideration of the set $\Omega \cap(\Omega+t)$, none of the cases were proven in their full generality.

In this paper, we consider the fourth case with non-symmetric convex polytopes. Our main result is the following.

Theorem 1.4. Let Ω be a non-symmetric convex polytope in \mathbb{R}^{d}. Then Ω is not a GONB set. In other words, there cannot exist a Λ such that $\mathcal{G}\left(|\Omega|^{-1 / 2} \chi_{\Omega}, \Lambda\right)$ forms an orthonormal basis.

We are unable to generalize the proof in [Kol00] to obtain a more general result for convex bodies (see Remark (3.3). Instead, we will follow a similar approach by Greenfeld and Lev [GL17, Theorem 3.1] (originally from [KP02]). To fully utilize the same line of thought, we will first consider the intersection of the polytopes Ω and its translate $\Omega+t$. We must assure that for a sufficiently small vector t, $\Omega \cap(\Omega+t)$ will remain non-symmetric with the $(d-1)$-volume of their facets staying continuous (Theorem 2.5). After that, we apply an analogous argument from Greenfeld-Lev twice on the frequency and time axes to obtain a similar contradiction.

2. Lemmas on polytopes

In this section, we study the structure of convex polytopes. The main references will be taken from Gru07,Sch13. Let us recall some terminology.

Let V_{α} be the α-dimensional volume function on \mathbb{R}^{d}. A (closed) half-space H is defined by $\left\{x \in \mathbb{R}^{d}:\langle a, x\rangle \leq b\right\}$, where a is the normal vector to H. A convex polyhedron is a finite intersection of closed half-spaces; thus, a convex polyhedron Ω is a closed set admitting a half-space representation

$$
\begin{equation*}
\Omega=\left\{x \in \mathbb{R}^{d}:\left\langle a_{i}, x\right\rangle \leq b_{i}, \forall i=1, \ldots, n\right\}=\bigcap_{i=1}^{n} H_{i}, \tag{2.1}
\end{equation*}
$$

where $H_{i}=\left\{x \in \mathbb{R}^{d}:\left\langle a_{i}, x\right\rangle \leq b_{i}\right\}$. A facet F_{i} of Ω is the intersection of Ω with the boundary of a half-space in its half-space representation; namely, $F_{i}=\left(\partial H_{i}\right) \cap \Omega$ such that $\mathrm{V}_{d-1}\left(F_{i}\right)>0$.

A convex polytope is the convex hull of finitely many points. It is well known that a convex polytope is equivalent to a bounded polyhedron. A convex polytope is (centrally) symmetric if there exists a point $x \in \mathbb{R}^{d}$ such that

$$
x-\Omega=\Omega-x .
$$

If $F=(\partial H) \cap \Omega$ is a facet of Ω, then $F^{\prime}=\left(\partial H^{\prime}\right) \cap \Omega$ is the parallel of F if $(\partial H) \cap\left(\partial H^{\prime}\right)=\emptyset$ (i.e., H and H^{\prime} share unit normal vectors in opposing directions). By convention, we take \emptyset to be the parallel facet of F if a parallel facet does not exist. The following theorem fully characterizes symmetric convex polytopes in terms of parallel facets and volume (see [Gru07, Corollary 18.1]).
Theorem 2.1 (Minkowski's Theorem). A convex polytope is symmetric if and only if for every facet $F \subset \Omega$, there exists a parallel facet F^{\prime} such that $\mathrm{V}_{d-1}\left(F^{\prime}\right)=$ $\mathrm{V}_{d-1}(F)$.

Let $\mathcal{C}:=\mathcal{C}\left[\mathbb{R}^{d}\right]$ be the set of compact convex sets on \mathbb{R}^{d}, and let $B_{\delta}(x)$ be the open ball of radius δ centered at x. We will denote by $\mathcal{P}:=\mathcal{P}\left[\mathbb{R}^{d}\right]$ the set of all polytopes in \mathcal{C}.

For any $E, F \in \mathcal{C}$, the Hausdorff metric of E and F is defined as

$$
d_{H}(E, F)=\inf \left\{\delta: E \subset F^{\delta}, \text { and } F \subset E^{\delta}\right\}
$$

where $E^{\delta}:=\bigcup_{x \in E} B_{\delta}(x)$ and similarly for F^{δ}. The metric space $\left(\mathcal{C}, d_{H}\right)$ is complete.

Now we remark that in general the volume function is not continuous for general compact sets.
Example 2.2. Let $T_{0}:=\left[v_{1} ; v_{2} ; v_{3}\right]$ denote a 2-simplex in \mathbb{R}^{2} with unit side lengths, and let $T_{n}:=\left[v_{1} ; v_{2} ;(1 / n) v_{3}+(1-1 / n) v_{1}\right]$ for $n>0$. T_{n} converges to the line segment L joining v_{1}, v_{2}, but of particular interest we see the non-convex sequence ∂T_{n} converges to the line segment L joining v_{1}, v_{2}. By triangle inequality, $\mathrm{V}_{1}\left(\partial T_{n}\right) \geq 2$ while $\mathrm{V}_{1}(L)=1$, so $\mathrm{V}_{1}\left(\partial T_{n}\right)$ cannot converge to $\mathrm{V}_{1}(L)$.

Nonetheless, V_{d-1} is continuous on \mathcal{C}. A quick way to see this can be found in Gru07, pp. 104-105]. In summary, up to a constant, V_{d-1} computes the surface area of a facet, and according to [Gru07, pp. 104-105],

$$
\mathrm{V}_{d-1}(C)=k_{d} W_{1}(C)
$$

where W_{1} is the quermassintegral of C and $k_{d}>0$ is some constant dependent on the dimension. It is thus a continuous function on $\left(\mathcal{C}, d_{H}\right)$ (by Gru07, Theorem 6.13]); hence,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} d_{H}\left(E_{n}, F\right) \Rightarrow \lim _{n \rightarrow \infty} \mathrm{~V}_{d-1}\left(E_{n}\right)=\mathrm{V}_{d-1}(F) \tag{2.2}
\end{equation*}
$$

Our goal now is to show that $\Omega_{t}:=\Omega \cap(\Omega+t)$ is non-symmetric for t small if Ω is non-symmetric.

Lemma 2.3. Let $t \in \mathbb{R}^{d}$, and let Ω be given by (2.1). Then Ω_{t} admits a representation

$$
\begin{equation*}
\Omega_{t}=\bigcap_{i=1}^{n} M_{i}, \tag{2.3}
\end{equation*}
$$

where

$$
M_{i}:=M_{i}(t)=\left\{x \in \mathbb{R}^{d}:\left\langle a_{i}, x\right\rangle \leq m_{i}\right\} \quad \text { and } \quad m_{i}:=\min \left\{b_{i}, b_{i}+\left\langle a_{i}, t\right\rangle\right\} .
$$

Proof. Let $\Omega=\bigcap_{i=1}^{n} H_{i}$, where $H_{i}=\left\{x:\left\langle a_{i}, x\right\rangle \leq b_{i}\right\}$. We have

$$
H_{i}+t=\left\{x+t:\left\langle a_{i}, x\right\rangle \leq b_{i}\right\}=\left\{x:\left\langle a_{i}, x-t\right\rangle \leq b_{i}\right\}=\left\{x:\left\langle a_{i}, x\right\rangle \leq b_{i}+\left\langle a_{i}, t\right\rangle\right\} .
$$

Let m_{i} be defined as above. Then it follows immediately that

$$
H_{i} \cap\left(H_{i}+t\right)=\left\{x:\left\langle a_{i}, x\right\rangle \leq m_{i}\right\}=M_{i} .
$$

Since

$$
\Omega_{t}=\Omega \cap(\Omega+t)=\left(\bigcap_{i=1}^{n} H_{i}\right) \cap\left(\bigcap_{i=1}^{n} H_{i}+t\right)=\bigcap_{i=1}^{n}\left(H_{i} \cap\left(H_{i}+t\right)\right)=\bigcap_{i=1}^{n} M_{i},
$$

this implies (2.3).
The following lemma shows that the facet in Ω_{t} converges to the original facet Ω in the Hausdorff metric.

Lemma 2.4. Let $\Omega \in \mathcal{P}$, and let $F=(\partial H) \cap \Omega$ be a facet of Ω. Write $H=\{x \in$ $\left.\mathbb{R}^{d}:\langle a, x\rangle \leq b\right\}$ and let $M(t)$ be as defined in Lemma 2.3 for H. Then the facets $F(t)=(\partial M(t)) \cap \Omega_{t}$ converge to F as $t \rightarrow 0$.

Proof. By [Sch13, Theorem 1.8.8], a sequence of compact convex sets K_{i} converges to K if and only if
(1) every point $x \in K$ is the limit of some sequence of points $\left\{x_{i}\right\}, x_{i} \in K_{i}$;
(2) for any convergent sequences $\left(x_{i_{j}}\right)$ with $x_{i_{j}} \in K_{i_{j}}$, the limit of $x_{i_{j}}$ belongs to K.
(1) is clear since $x+t \rightarrow x$ as $|t| \rightarrow 0$ and $x+t \in F(t)$. For (2), choose any convergent sequence $\left(x_{t_{i}}\right)$ with $x_{t_{i}} \in F\left(t_{i}\right)$ and denote its limit by x. Then Lemma 2.3 implies that

$$
\partial M(t)=\{x:\langle a, x\rangle=\min \{b, b+\langle a, t\rangle\}\} .
$$

Now, $x_{t_{i}} \in \partial M\left(t_{i}\right)$, so $\left\langle a, x_{t_{i}}\right\rangle=\min \left\{b, b+\left\langle a, t_{i}\right\rangle\right\}$. But t_{i} converges to 0 by the continuity of $\langle\cdot, \cdot\rangle$ and min, so $\langle a, x\rangle=b$. In other words, $x \in \partial H$. On the other hand, $x \in \Omega_{t}=\Omega \cap(\Omega+t) \subset \Omega$, so $x \in F$. This completes the proof.

Theorem 2.5. Suppose Ω is a non-symmetric polytope. Then there exists $\epsilon>0$ such that for all $|t| \leq \epsilon, \Omega_{t}$ is non-symmetric. More specifically, given a nonsymmetric facet F in $\Omega, F(t)$ is a non-symmetric facet for Ω_{t} for $|t| \leq \epsilon$.

Proof. It suffices to show the second statement since then the first statement will follow from Minkowski's Theorem.

Let F be a non-symmetric facet of Ω, and choose a facet F^{\prime} parallel to F with $\mathrm{V}_{d-1}(F) \neq \mathrm{V}_{d-1}\left(F^{\prime}\right)$. By Minkowski's Theorem, such a facet is guaranteed to exist. Define

$$
V(t):=\left|\mathrm{V}_{d-1}(F(t))-\mathrm{V}_{d-1}\left(F^{\prime}(t)\right)\right|
$$

By Lemma 2.4 and (2.2), $\mathrm{V}_{d-1}(F(t))$ and $\mathrm{V}_{d-1}\left(F^{\prime}(t)\right)$ are continuous at 0 , hence $V(t)$ is continuous at 0 . So

$$
V(0)=\left|\mathrm{V}_{d-1}(F(0))-\mathrm{V}_{d-1}\left(F^{\prime}(0)\right)\right|=\left|\mathrm{V}_{d-1}(F)-\mathrm{V}_{d-1}\left(F^{\prime}\right)\right|>0
$$

thus we can choose some $\epsilon>0$ such that $V(t)>0$ for $|t|<\epsilon$. Choosing ϵ smaller, this holds true for the compact ball $|t| \leq \epsilon$. Thus

$$
\left|\mathrm{V}_{d-1}(F(t))-\mathrm{V}_{d-1}\left(F^{\prime}(t)\right)\right|=V(t)>0
$$

This complete the proof.
We remark that the condition on $|t|$ cannot be removed. The following example shows that an intersection of the non-symmetric polytopes and its translates may become symmetric for some translations.

Example 2.6. Let Ω be the polytope with five edges and vertices given by $(0,0)$, $(2,0),(2,2),(1,2)$, and $(0,1)$. It is a square with the top left-hand corner removed and it is clearly non-symmetric. Consider $t=(-1,-1)$. Then $\Omega \cap(\Omega+t)$ becomes a square with vertices $(0,0),(1,0),(0,1)$, and $(1,1)$, so it is symmetric. This shows that in the above theorem, one cannot remove the condition that $|t|$ is sufficiently small.

3. Proof of the main theorem

Let Ω be the convex polytope on \mathbb{R}^{d}. We denote by $\sigma_{F}(x)$ the surface measure on the facet F of Ω. Let n_{F} denote the outward unit normal to the facet F on Ω. From Lemma 2.3, the corresponding facet $F(t)$ of $\Omega_{t}=\Omega \cap(\Omega+t)$ shares the same normal vector. The following lemma is a variant of Greenfeld-Lev [GL17, Lemma 2.7] (the case $t=0$). We show that the lower order term can be bounded, independent of t.

Lemma 3.1. Let $A(t)$ be a facet of Ω_{t}, and let $B(t)$ be the parallel facet to $A(t)$ of Ω_{t} with outward unit normals e_{1} and $-e_{1}(B(t)=\emptyset$ if such a parallel facet does not exist). Then there exists $\omega:=\omega_{\Omega}>0$, independent of t, such that in the cone

$$
C(\omega):=\left\{\lambda \in \mathbb{R}^{d}:\left|\lambda_{j}\right| \leq \omega\left|\lambda_{1}\right| \text { for all } 2 \leq j \leq d\right\}
$$

we have

$$
\begin{equation*}
-2 \pi i \lambda_{1} \widehat{\chi}_{\Omega_{t}}(\lambda)=\widehat{\sigma}_{A(t)}(\lambda)-\widehat{\sigma}_{B(t)}(\lambda)+G_{t}(\lambda) \tag{3.1}
\end{equation*}
$$

with

$$
\left|G_{t}(\lambda)\right| \leq \frac{C}{\left|\lambda_{1}\right|},
$$

for some constant $C>0$, independent of t.
Proof. By the divergence theorem (see GL17, Lemma 2.4]),

$$
-2 \pi i \lambda_{1} \widehat{\chi}_{\Omega_{t}}(\lambda)=\widehat{\sigma}_{A(t)}(\lambda)-\widehat{\sigma}_{B(t)}(\lambda)+\sum\left\langle e_{1}, n_{F}\right\rangle \widehat{\sigma}_{F(t)}(\lambda)
$$

where the sum is over all facets $F(t)$ of Ω_{t} except $A(t)$ and $B(t)$. Define $G_{t}(\lambda)$ to be the sum. By GL17, Lemma 2.6],

$$
\begin{equation*}
\left|\widehat{\sigma}_{F(t)}(\lambda)\right| \leq \frac{\mathrm{V}_{d-2}(\partial F(t))}{2 \pi} \cdot \frac{|\lambda|^{-1}}{\left|\sin \theta_{\lambda, n_{F}}\right|} \leq \frac{\mathrm{V}_{d-2}(\partial F)}{2 \pi} \cdot \frac{|\lambda|^{-1}}{\left|\sin \theta_{\lambda, n_{F}}\right|}, \tag{3.2}
\end{equation*}
$$

where $\theta_{\lambda, n_{F}}$ is the angle between $\lambda \in \mathbb{R}^{d} \backslash\{0\}$. The second inequality follows from the fact that the facet $F(t)$ is either empty, a subset of the facet F, or a subset of the facet $F+t$, so $\mathrm{V}_{d-2}(\partial F(t)) \leq \mathrm{V}_{d-2}(\partial F)$. If ω is sufficiently small, then for $\lambda \in C(\omega), \theta_{\lambda, n_{F}}$ is bounded away from 0 and π for all n_{F}, so inside the cone $C(\omega)$, summing up all F in (3.2) shows $G_{t}(\lambda)$ is bounded by $C|\lambda|^{-1}$ as $\left|\lambda_{1}\right| \rightarrow \infty$. As n_{F} does not depend on t, C does not depend on t.

We now return to the main problem. Let $g \in L^{2}\left(\mathbb{R}^{d}\right)$. The short time Fourier transform (STFT) is defined by

$$
V_{g} g(t, \lambda):=\int g(x) \overline{g(x-t)} e^{-2 \pi i\langle\lambda, x\rangle} d x
$$

If $g=|\Omega|^{-1 / 2} \chi_{\Omega}$, we have

$$
\begin{equation*}
V_{g} g(t, \lambda)=|\Omega|^{-1} \widehat{\chi} \Omega \cap(\Omega+t)(\lambda)=|\Omega|^{-1} \widehat{\chi}_{\Omega_{t}}(\lambda) . \tag{3.3}
\end{equation*}
$$

We observe that a Gabor system $\mathcal{G}(g, \Lambda)$ forms an orthonormal basis if and only if the following holds:
(1) (Mutual Orthogonality) $\Lambda-\Lambda \subset\left\{(t, \lambda): V_{g} g(t, \lambda)=0\right\}$ and
(2) (Completeness) $\mathcal{G}(g, \Lambda)$ is complete in $L^{2}\left(\mathbb{R}^{d}\right)$
(see GLW15, AAK17 for a complete derivation). Furthermore, if $\mathcal{G}(g, \Lambda)$ forms an orthonormal basis, due to the continuity of $V_{g} g$ at the origin, Λ must be uniformly discrete, i.e., there exists $\delta>0$ such that every ball of radius δ intersects Λ at at most one point. On the other hand, Λ is relatively dense in $\mathbb{R}^{2 d}$ in the sense that there exists $R>0$ such that any balls of radius R must intersect Λ since the density of Λ on $\mathbb{R}^{2 d}$ must equal one (see [RS95]).

Let $S(r)=\left\{t e_{1}+w: t \in \mathbb{R}, w \in \mathbb{R}^{d},|w|<r\right\}$ be the cylinder along the x_{1}-axis.
Lemma 3.2. Suppose Ω is a non-symmetric convex polytope on \mathbb{R}^{d}, and let $g=$ $|\Omega|^{-1 / 2} \chi_{\Omega}$. There exist $\epsilon>0, R>0$ and $\delta>0$ such that

$$
V_{g} g(t, \lambda) \neq 0 \quad \forall \lambda \in S(2 \delta) \backslash B_{R}(0)
$$

for all $|t|<\epsilon$.
Proof. Take $\epsilon>0$ from Theorem [2.5, and consider $|t| \leq \epsilon$. Let $A(t)$ be the nonsymmetric facet of Ω_{t} and let $B(t)$ be its parallel facet. Using an affine transformation, assume $A(t)$ and $B(t)$ lie on the hyperplanes $\left\{x_{1}=0\right\}$ and $\left\{x_{1}=1\right\}$ respectively, and let $\eta:=\min _{|t| \leq \epsilon}\left|\mathrm{V}_{d-1}(A(t))-\mathrm{V}_{d-1}(B(t))\right|$. By Theorem [2.5, $\eta>0$.

We have

$$
\widehat{\sigma}_{A(t)}(\lambda)=\widehat{\chi}_{A(t)}\left(\lambda_{2}, \ldots, \lambda_{d}\right) \quad \text { and } \quad \widehat{\sigma}_{B(t)}(\lambda)=e^{2 \pi i \lambda_{1}} \widehat{\chi}_{B(t)}\left(\lambda_{2}, \ldots, \lambda_{d}\right)
$$

where $\chi_{B(t)}$ and $\chi_{A(t)}$ are the characteristic functions of the orthogonal projections of $B(t)$ and $A(t)$ onto $\left(x_{2}, \ldots, x_{d}\right)$ respectively. Moreover,

$$
\begin{aligned}
\widehat{\chi}_{A(t)}(0) & =\mathrm{V}_{d-1}(A(t)) \\
\widehat{\chi}_{A(t)}-\widehat{\chi}_{A(0)} & =\widehat{\chi}_{A(t) \Delta A(0)}
\end{aligned}
$$

where Δ is the symmetric difference. Thus we deduce

$$
\left|\widehat{\chi}_{A(t)}\left(\lambda^{\prime}\right)-\widehat{\chi}_{A(0)}\left(\lambda^{\prime}\right)\right| \leq \mathrm{V}_{d-1}(A(t) \Delta A(0)) \rightarrow 0 \text { as } t \rightarrow 0, \forall \lambda^{\prime} \in \mathbb{R}^{d-1}
$$

so $\widehat{\sigma}_{A(t)}$ converges uniformly to $\widehat{\sigma}_{A(0)}$ on \mathbb{R}^{d-1}. Similarly, $\widehat{\sigma}_{B(t)}$ converges uniformly to $\widehat{\sigma}_{B(0)}$.

Thus, by uniformity, we can choose $\delta>0$, independent of t, such that

$$
\left|\widehat{\sigma}_{A(t)}(\lambda)-\widehat{\sigma}_{B(t)}(\lambda)\right| \geq \eta
$$

in the cylinder $S(2 \delta)$. Using (3.3) and Lemma 3.1, we can choose $\omega>0$ and $C>0$, independent of t, such that

$$
2 \pi|\Omega|\left|\lambda_{1}\right|\left|V_{g} g(t, \lambda)\right| \geq \eta-\left|G_{t}(\lambda)\right| \geq \eta-\frac{C}{\left|\lambda_{1}\right|}
$$

in the cone intersection $C(\omega) \cap S(2 \delta)$. Taking R large so that $S(2 \delta) \backslash B_{R}(0) \subseteq$ $C(\omega) \backslash B_{R}(0)$ and

$$
\eta-\frac{C}{\left|\lambda_{1}\right|}>0 \text { on } S(2 \delta) \backslash B_{R}(0),
$$

we see that

$$
V_{g} g(t, \lambda) \neq 0, \quad \lambda \in S(2 \delta) \backslash B_{R}(0)
$$

for any $|t|<\epsilon$. Since the constant C and ω are taken independently of t, R is independent of t, so we are done.

We now give the proof for Theorem 1.4.
Proof of Theorem 1.4. We argue by contradiction. Suppose $\mathcal{G}(g, \Lambda)$ forms a Gabor orthonormal basis, and let ϵ, δ, and R be as defined in the previous lemma.
Claim. For any $\tau, x \in \mathbb{R}^{d}, \operatorname{card}\left(\Lambda \cap\left[B_{\epsilon / 2}(x) \times(S(\delta)+\tau)\right]\right)<\infty$, where $\operatorname{card}(\cdot)$ denotes cardinality.

Suppose not. As Λ is uniformly discrete, one can find $v=(t, \lambda)$ and $v^{\prime}=\left(t^{\prime}, \lambda^{\prime}\right) \in$ $\Lambda \cap\left[B_{\epsilon / 2}(\nu) \times(S(\delta)+\tau)\right]$ with $\left|\lambda-\lambda^{\prime}\right|>R$. But $\left|t-t^{\prime}\right|<\epsilon$ and $\lambda-\lambda^{\prime} \in S(2 \delta)$, thus Lemma 3.2 tells us that we must have

$$
V_{g} g\left(t-t^{\prime}, \lambda-\lambda^{\prime}\right) \neq 0
$$

This contradicts the mutual orthogonality of Λ. Thus, $\left|\lambda^{\prime}-\lambda\right| \leq R$, otherwise, $\lambda^{\prime}-\lambda \in S(2 \delta) \backslash B_{R}$ which implies $V_{g} g(t, \lambda) \neq 0$, a contradiction to the mutual orthogonality. This establishes the claim.

Now since Λ is a relatively dense set, there is a radius $\delta^{*}>0$ such that every $2 d$-ball of radius δ^{*} nontrivially intersects Λ. Consider the set $B_{\delta^{*}}^{d}(0) \times S\left(\delta^{*}\right)(d$ denotes the d-dimensional ball) covered by finitely many cylinders $B_{\epsilon / 2}^{d}\left(\nu_{i}\right) \times(S(\delta)+$ $\left.\tau_{j}\right), 1 \leq i, j \leq N$. Then $\operatorname{card}\left(\Lambda \cap\left[B_{\delta^{*}}^{d}(0) \times S\left(\delta^{*}\right)\right]\right)<\infty$. However, this implies that $B_{\delta^{*}}^{d}(0) \times S\left(\delta^{*}\right)$ contains a $2 d$-ball of radius δ^{*} that does not intersect Λ, a contradiction to the relative density. It follows that such Λ does not exist and our proof is complete.

Remark 3.3. There is an approach to the Fuglede conjecture used in Kol00 which considers the Fourier transform of the function $f=|\widehat{\chi \Omega}|^{2}$. This transform is equal to $\chi_{\Omega} * \chi_{-\Omega}$, so \widehat{f} has compact support, allowing the use of Kol00, Theorem 2] to
obtain a conclusion about the support of the Fourier transform of δ_{Γ} (as a tempered distribution). Considering $f=\left|V_{g} g\right|^{2}$ on $\mathbb{R}^{2 d}$ with $g=\chi_{\Omega}$,

$$
\left(\left|V_{g} g\right|\right)(t, \xi)=V_{g} g(\xi,-t)
$$

(see Grö14, Equation (11) on page 873]), there is no compactly supported Fourier transform (since the time side is unbounded), so the method in Kol00 cannot be realized without some nontrivial adjustment.

Acknowledgements

Both authors would like to thank ORSP for their support in making this research possible. The authors would also like to thank Professor Joseph Gubeladze for providing Example 2.6.

References

[AAK17] Elona Agora, Jorge Antezana, and Mihail N. Kolountzakis, Tiling functions and Gabor orthonormal basis. apr 2017. arXiv:1704.02831
[DL14] Dorin Ervin Dutkay and Chun Kit Lai, Uniformity of measures with Fourier frames, Advances in Mathematics 252 (2014), 684-707. arXiv:1202.6028v1, doi:10.1016/j.aim.2013.11.012
[Fug74] Bent Fuglede, Commuting self-adjoint partial differential operators and a group theoretic problem, J. Functional Analysis 16 (1974), 101-121. MR0470754
[GL17] Rachel Greenfeld and Nir Lev, Fuglede's spectral set conjecture for convex polytopes, Anal. PDE 10 (2017), no. 6, 1497-1538, DOI 10.2140/apde.2017.10.1497. MR3678495
[GLW15] Jean Pierre Gabardo, Chun Kit Lai, and Yang Wang, Gabor orthonormal bases generated by the unit cubes, Journal of Functional Analysis 269 (2015), no. 5, 1515-1538. arXiv:1411.7765, doi:10.1016/j.jfa.2015.06.004
[Grö01] Karlheinz Gröchenig, Foundations of time-frequency analysis, Applied and Numerical Harmonic Analysis, Birkhäuser Boston, Inc., Boston, MA, 2001. MR1843717
[Grö14] Karlheinz Gröchenig, The mystery of Gabor frames, J. Fourier Anal. Appl. 20 (2014), no. 4, 865-895, DOI 10.1007/s00041-014-9336-3. MR3232589
[Gru07] Peter M. Gruber, Convex and discrete geometry, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 336, Springer, Berlin, 2007. MR2335496
[IKT01] Alex Iosevich, N. H. Katz, and Terence Tao, Convex bodies with a point of curvature do not have Fourier bases, American Journal of Mathematics 2001, pages 115-120. arXiv:9911167 doi:10.1353/ajm.2001.0003
[IM17] Alex Iosevich and Azita Mayeli, Gabor orthogonal bases and convexity, Aug 2017. arXiv:1708.06397
[KM06] Mihail N. Kolountzakis and Máté Matolcsi, Tiles with no spectra, Forum Math. 18 (2006), no. 3, 519-528, DOI 10.1515/FORUM.2006.026. MR2237932
[Kol00] Mihail N. Kolountzakis, Non-symmetric convex domains have no basis of exponentials, Illinois J. Math. 44 (2000), no. 3, 542-550. MR1772427
[KP02] Mihail N. Kolountzakis and Michael Papadimitrakis, A class of non-convex polytopes that admit no orthonormal basis of exponentials, Illinois J. Math. 46 (2002), no. 4, 1227-1232. MR1988260
[Lab01] Izabella Laba, Fuglede's conjecture for a union of two intervals, Proc. Amer. Math. Soc. 129 (2001), no. 10, 2965-2972. arXiv:0002067 doi:10.1090/S0002-9939-0106035-X
[LM] Chun Kit Lai and Azita Mayeli, Non-separable lattices, Gabor orthonormal bases and tiling.
[LW03] Youming Liu and Yang Wang, The uniformity of non-uniform Gabor bases, Advances in Computational Mathematics 18 (2003), no. 2-4, 345-355. doi:10.1023/A:1021350103925
[RS95] Jayakumar Ramanathan and Tim Steger, Incompleteness of sparse coherent states, Appl. Comput. Harmon. Anal. 2 (1995), no. 2, 148-153, DOI 10.1006/acha.1995.1010. MR1325536
[Sch13] Rolf Schneider, Convex Bodies: The Brunn-Minkowski Theory, Cambridge University Press, Cambridge, 2013. doi:10.1017/CBO9781139003858
[Tao03] Terence Tao, Fuglede's conjecture is false in 5 and higher dimensions, Mathematical Research Letters 2 (2003), no. 2, 8. arXiv:0306134, doi:10.4310/MRL.2004.v11.n2.a8

Department of Mathematics, San Francisco State University, San Francisco, CaliFORNIA 94132

Email address: university@jeongjh.com
Department of Mathematics, San Francisco State University, San Francisco, CaliFORNIA 94132

Email address: cklai@sfsu.edu

[^0]: Received by the editors November 26, 2017.
 2010 Mathematics Subject Classification. Primary 42C15, 52B11.
 Key words and phrases. Gabor orthonormal bases, polytope, spectral sets, tilings.
 This work was an undergraduate research project in 2015-16 supported by the Office of Research and Sponsorship Programs (ORSP) at San Francisco State University (Grant No. ST 659).

