Non-symmetric convex polytopes and Gabor orthonormal bases
HTML articles powered by AMS MathViewer
- by Randolf Chung and Chun-kit Lai
- Proc. Amer. Math. Soc. 146 (2018), 5147-5155
- DOI: https://doi.org/10.1090/proc/14183
- Published electronically: September 4, 2018
- PDF | Request permission
Abstract:
In this paper, we show that non-symmetric convex polytopes cannot serve as a window function to produce a Gabor orthonormal basis by any time-frequency sets.References
- Elona Agora, Jorge Antezana, and Mihail N. Kolountzakis, Tiling functions and Gabor orthonormal basis. apr 2017. arXiv:1704.02831.
- Dorin Ervin Dutkay and Chun Kit Lai, Uniformity of measures with Fourier frames, Advances in Mathematics 252 (2014), 684–707. arXiv:1202.6028v1, doi:10.1016/j.aim.2013.11.012.
- Bent Fuglede, Commuting self-adjoint partial differential operators and a group theoretic problem, J. Functional Analysis 16 (1974), 101–121. MR 0470754, DOI 10.1016/0022-1236(74)90072-x
- Rachel Greenfeld and Nir Lev, Fuglede’s spectral set conjecture for convex polytopes, Anal. PDE 10 (2017), no. 6, 1497–1538. MR 3678495, DOI 10.2140/apde.2017.10.1497
- Jean Pierre Gabardo, Chun Kit Lai, and Yang Wang, Gabor orthonormal bases generated by the unit cubes, Journal of Functional Analysis 269 (2015), no. 5, 1515–1538. arXiv:1411.7765, doi:10.1016/j.jfa.2015.06.004.
- Karlheinz Gröchenig, Foundations of time-frequency analysis, Applied and Numerical Harmonic Analysis, Birkhäuser Boston, Inc., Boston, MA, 2001. MR 1843717, DOI 10.1007/978-1-4612-0003-1
- Karlheinz Gröchenig, The mystery of Gabor frames, J. Fourier Anal. Appl. 20 (2014), no. 4, 865–895. MR 3232589, DOI 10.1007/s00041-014-9336-3
- Peter M. Gruber, Convex and discrete geometry, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 336, Springer, Berlin, 2007. MR 2335496
- Alex Iosevich, N. H. Katz, and Terence Tao, Convex bodies with a point of curvature do not have Fourier bases, American Journal of Mathematics 2001, pages 115–120. arXiv:9911167, doi:10.1353/ajm.2001.0003.
- Alex Iosevich and Azita Mayeli, Gabor orthogonal bases and convexity, Aug 2017. arXiv:1708.06397.
- Mihail N. Kolountzakis and Máté Matolcsi, Tiles with no spectra, Forum Math. 18 (2006), no. 3, 519–528. MR 2237932, DOI 10.1515/FORUM.2006.026
- Mihail N. Kolountzakis, Non-symmetric convex domains have no basis of exponentials, Illinois J. Math. 44 (2000), no. 3, 542–550. MR 1772427
- Mihail N. Kolountzakis and Michael Papadimitrakis, A class of non-convex polytopes that admit no orthonormal basis of exponentials, Illinois J. Math. 46 (2002), no. 4, 1227–1232. MR 1988260
- Izabella Laba, Fuglede’s conjecture for a union of two intervals, Proc. Amer. Math. Soc. 129 (2001), no. 10, 2965–2972. arXiv:0002067, doi:10.1090/S0002-9939-0106035-X.
- Chun Kit Lai and Azita Mayeli, Non-separable lattices, Gabor orthonormal bases and tiling.
- Youming Liu and Yang Wang, The uniformity of non-uniform Gabor bases, Advances in Computational Mathematics 18 (2003), no. 2-4, 345–355. doi:10.1023/A:1021350103925.
- Jayakumar Ramanathan and Tim Steger, Incompleteness of sparse coherent states, Appl. Comput. Harmon. Anal. 2 (1995), no. 2, 148–153. MR 1325536, DOI 10.1006/acha.1995.1010
- Rolf Schneider, Convex Bodies: The Brunn-Minkowski Theory, Cambridge University Press, Cambridge, 2013. doi:10.1017/CBO9781139003858.
- Terence Tao, Fuglede’s conjecture is false in 5 and higher dimensions, Mathematical Research Letters 2 (2003), no. 2, 8. arXiv:0306134, doi:10.4310/MRL.2004.v11.n2.a8.
Bibliographic Information
- Randolf Chung
- Affiliation: Department of Mathematics, San Francisco State University, San Francisco, California 94132
- Email: university@jeongjh.com
- Chun-kit Lai
- Affiliation: Department of Mathematics, San Francisco State University, San Francisco, California 94132
- MR Author ID: 950029
- Email: cklai@sfsu.edu
- Received by editor(s): November 26, 2017
- Published electronically: September 4, 2018
- Additional Notes: This work was an undergraduate research project in 2015-16 supported by the Office of Research and Sponsorship Programs (ORSP) at San Francisco State University (Grant No. ST 659).
- Communicated by: Alexander Iosevich
- © Copyright 2018 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 146 (2018), 5147-5155
- MSC (2010): Primary 42C15, 52B11
- DOI: https://doi.org/10.1090/proc/14183
- MathSciNet review: 3866854