Local gradient estimates for heat equation on $RCD^*(k,n)$ metric measure spaces
HTML articles powered by AMS MathViewer
- by Jia-Cheng Huang
- Proc. Amer. Math. Soc. 146 (2018), 5391-5407
- DOI: https://doi.org/10.1090/proc/14185
- Published electronically: September 4, 2018
- PDF | Request permission
Abstract:
In this paper, we will establish a local gradient estimate and a Liouville type theorem for weak solutions of the heat equation on $RCD^*(K,N)$ metric measure spaces.References
- Luigi Ambrosio, Nicola Gigli, and Giuseppe Savaré, Bakry-Émery curvature-dimension condition and Riemannian Ricci curvature bounds, Ann. Probab. 43 (2015), no. 1, 339–404. MR 3298475, DOI 10.1214/14-AOP907
- Luigi Ambrosio, Nicola Gigli, and Giuseppe Savaré, Density of Lipschitz functions and equivalence of weak gradients in metric measure spaces, Rev. Mat. Iberoam. 29 (2013), no. 3, 969–996. MR 3090143, DOI 10.4171/RMI/746
- Luigi Ambrosio, Nicola Gigli, and Giuseppe Savaré, Calculus and heat flow in metric measure spaces and applications to spaces with Ricci bounds from below, Invent. Math. 195 (2014), no. 2, 289–391. MR 3152751, DOI 10.1007/s00222-013-0456-1
- Luigi Ambrosio, Andrea Mondino, and Giuseppe Savaré, On the Bakry-Émery condition, the gradient estimates and the local-to-global property of $\mathsf {RCD}^*(K,N)$ metric measure spaces, J. Geom. Anal. 26 (2016), no. 1, 24–56. MR 3441502, DOI 10.1007/s12220-014-9537-7
- Kathrin Bacher and Karl-Theodor Sturm, Localization and tensorization properties of the curvature-dimension condition for metric measure spaces, J. Funct. Anal. 259 (2010), no. 1, 28–56. MR 2610378, DOI 10.1016/j.jfa.2010.03.024
- Dominique Bakry, François Bolley, and Ivan Gentil, The Li-Yau inequality and applications under a curvature-dimension condition, Ann. Inst. Fourier (Grenoble) 67 (2017), no. 1, 397–421 (English, with English and French summaries). MR 3612336, DOI 10.5802/aif.3086
- Dominique Bakry and Michel Ledoux, A logarithmic Sobolev form of the Li-Yau parabolic inequality, Rev. Mat. Iberoam. 22 (2006), no. 2, 683–702. MR 2294794, DOI 10.4171/RMI/470
- Frank Bauer, Paul Horn, Yong Lin, Gabor Lippner, Dan Mangoubi, and Shing-Tung Yau, Li-Yau inequality on graphs, J. Differential Geom. 99 (2015), no. 3, 359–405. MR 3316971
- Dominique Bakry and Zhongmin M. Qian, Harnack inequalities on a manifold with positive or negative Ricci curvature, Rev. Mat. Iberoamericana 15 (1999), no. 1, 143–179. MR 1681640, DOI 10.4171/RMI/253
- J. Cheeger, Differentiability of Lipschitz functions on metric measure spaces, Geom. Funct. Anal. 9 (1999), no. 3, 428–517. MR 1708448, DOI 10.1007/s000390050094
- E. B. Davies, Heat kernels and spectral theory, Cambridge Tracts in Mathematics, vol. 92, Cambridge University Press, Cambridge, 1989. MR 990239, DOI 10.1017/CBO9780511566158
- Matthias Erbar, Kazumasa Kuwada, and Karl-Theodor Sturm, On the equivalence of the entropic curvature-dimension condition and Bochner’s inequality on metric measure spaces, Invent. Math. 201 (2015), no. 3, 993–1071. MR 3385639, DOI 10.1007/s00222-014-0563-7
- Nicola Garofalo and Andrea Mondino, Li-Yau and Harnack type inequalities in $\mathsf {RCD}^*(K,N)$ metric measure spaces, Nonlinear Anal. 95 (2014), 721–734. MR 3130557, DOI 10.1016/j.na.2013.10.002
- Nicola Gigli, On the differential structure of metric measure spaces and applications, Mem. Amer. Math. Soc. 236 (2015), no. 1113, vi+91. MR 3381131, DOI 10.1090/memo/1113
- Piotr Hajłasz, Sobolev spaces on metric-measure spaces, Heat kernels and analysis on manifolds, graphs, and metric spaces (Paris, 2002) Contemp. Math., vol. 338, Amer. Math. Soc., Providence, RI, 2003, pp. 173–218. MR 2039955, DOI 10.1090/conm/338/06074
- Piotr Hajłasz and Pekka Koskela, Sobolev met Poincaré, Mem. Amer. Math. Soc. 145 (2000), no. 688, x+101. MR 1683160, DOI 10.1090/memo/0688
- Juha Heinonen, Pekka Koskela, Nageswari Shanmugalingam, and Jeremy T. Tyson, Sobolev classes of Banach space-valued functions and quasiconformal mappings, J. Anal. Math. 85 (2001), 87–139. MR 1869604, DOI 10.1007/BF02788076
- Lars Hörmander, The analysis of linear partial differential operators. I, 2nd ed., Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 256, Springer-Verlag, Berlin, 1990. Distribution theory and Fourier analysis. MR 1065993, DOI 10.1007/978-3-642-61497-2
- B. Hua, M. Kell, and C. Xia, Harmonic functions on metric measure spaces, (2013), available at http://arxiv.org/abs/1308.3607.
- Richard S. Hamilton, A matrix Harnack estimate for the heat equation, Comm. Anal. Geom. 1 (1993), no. 1, 113–126. MR 1230276, DOI 10.4310/CAG.1993.v1.n1.a6
- Renjin Jiang, The Li-Yau inequality and heat kernels on metric measure spaces, J. Math. Pures Appl. (9) 104 (2015), no. 1, 29–57 (English, with English and French summaries). MR 3350719, DOI 10.1016/j.matpur.2014.12.002
- Renjin Jiang and Huichun Zhang, Hamilton’s gradient estimates and a monotonicity formula for heat flows on metric measure spaces, Nonlinear Anal. 131 (2016), 32–47. MR 3427968, DOI 10.1016/j.na.2015.08.011
- Yin Jiang and Hui-Chun Zhang, Sharp spectral gaps on metric measure spaces, Calc. Var. Partial Differential Equations 55 (2016), no. 1, Art. 14, 14. MR 3449924, DOI 10.1007/s00526-016-0952-4
- Paul W. Y. Lee, Generalized Li-Yau estimates and Huisken’s monotonicity formula, ESAIM Control Optim. Calc. Var. 23 (2017), no. 3, 827–850. MR 3660450, DOI 10.1051/cocv/2016015
- Junfang Li and Xiangjin Xu, Differential Harnack inequalities on Riemannian manifolds I: linear heat equation, Adv. Math. 226 (2011), no. 5, 4456–4491. MR 2770456, DOI 10.1016/j.aim.2010.12.009
- Peter Li and Shing-Tung Yau, On the parabolic kernel of the Schrödinger operator, Acta Math. 156 (1986), no. 3-4, 153–201. MR 834612, DOI 10.1007/BF02399203
- Xiang-Dong Li, Liouville theorems for symmetric diffusion operators on complete Riemannian manifolds, J. Math. Pures Appl. (9) 84 (2005), no. 10, 1295–1361 (English, with English and French summaries). MR 2170766, DOI 10.1016/j.matpur.2005.04.002
- John Lott and Cédric Villani, Ricci curvature for metric-measure spaces via optimal transport, Ann. of Math. (2) 169 (2009), no. 3, 903–991. MR 2480619, DOI 10.4007/annals.2009.169.903
- John Lott and Cédric Villani, Weak curvature conditions and functional inequalities, J. Funct. Anal. 245 (2007), no. 1, 311–333. MR 2311627, DOI 10.1016/j.jfa.2006.10.018
- Niko Marola and Mathias Masson, On the Harnack inequality for parabolic minimizers in metric measure spaces, Tohoku Math. J. (2) 65 (2013), no. 4, 569–589. MR 3161434, DOI 10.2748/tmj/1386354296
- A. Mondino and A. Naber, Structure theory of metric measure spaces with lower Ricci curvature bounds I, (2014), available at http://arxiv.org/abs/1405.2222.
- Andrea Mondino and Guofang Wei, On the universal cover and the fundamental group of an $RCD^*(K,N)$-space, Journal für die reine und angewandte Mathematik (2016), DOI: https://doi.org/10.1515/crelle-2016-0068.
- X. R. Olivé, Neumann Li–Yau gradient estimate under integral Ricci curvature bounds, (2017), arXiv:1710.08649 [math.DG].
- Anton Petrunin, Alexandrov meets Lott-Villani-Sturm, Münster J. Math. 4 (2011), 53–64. MR 2869253
- Bin Qian, Remarks on differential Harnack inequalities, J. Math. Anal. Appl. 409 (2014), no. 1, 556–566. MR 3095062, DOI 10.1016/j.jmaa.2013.07.043
- Zhongmin Qian, Hui-Chun Zhang, and Xi-Ping Zhu, Sharp spectral gap and Li-Yau’s estimate on Alexandrov spaces, Math. Z. 273 (2013), no. 3-4, 1175–1195. MR 3030695, DOI 10.1007/s00209-012-1049-1
- Nageswari Shanmugalingam, Newtonian spaces: an extension of Sobolev spaces to metric measure spaces, Rev. Mat. Iberoamericana 16 (2000), no. 2, 243–279. MR 1809341, DOI 10.4171/RMI/275
- Philippe Souplet and Qi S. Zhang, Sharp gradient estimate and Yau’s Liouville theorem for the heat equation on noncompact manifolds, Bull. London Math. Soc. 38 (2006), no. 6, 1045–1053. MR 2285258, DOI 10.1112/S0024609306018947
- Karl-Theodor Sturm, On the geometry of metric measure spaces. I, Acta Math. 196 (2006), no. 1, 65–131. MR 2237206, DOI 10.1007/s11511-006-0002-8
- Karl-Theodor Sturm, Analysis on local Dirichlet spaces. II. Upper Gaussian estimates for the fundamental solutions of parabolic equations, Osaka J. Math. 32 (1995), no. 2, 275–312. MR 1355744
- K. T. Sturm, Analysis on local Dirichlet spaces. III. The parabolic Harnack inequality, J. Math. Pures Appl. (9) 75 (1996), no. 3, 273–297. MR 1387522
- Hui-Chun Zhang and Xi-Ping Zhu, Ricci curvature on Alexandrov spaces and rigidity theorems, Comm. Anal. Geom. 18 (2010), no. 3, 503–553. MR 2747437, DOI 10.4310/CAG.2010.v18.n3.a4
- Hui-Chun Zhang and Xi-Ping Zhu, Lipschitz continuity of harmonic maps between Alexandrov spaces, Invent. Math. 211 (2018), no. 3, 863–934. MR 3763402, DOI 10.1007/s00222-017-0757-x
- Hui-Chun Zhang and Xi-Ping Zhu, Local Li-Yau’s estimates on $RCD^*{(K,N)}$ metric measure spaces, Calc. Var. Partial Differential Equations 55 (2016), no. 4, Art. 93, 30. MR 3523660, DOI 10.1007/s00526-016-1040-5
- Qi S. Zhang and Meng Zhu, Li-Yau gradient bound for collapsing manifolds under integral curvature condition, Proc. Amer. Math. Soc. 145 (2017), no. 7, 3117–3126. MR 3637958, DOI 10.1090/proc/13418
- Qi S. Zhang and Meng Zhu, Li–Yau gradient bounds under nearly optimal curvature conditions, arXiv:1511.00791 [math.DG], 2015.
Bibliographic Information
- Jia-Cheng Huang
- Affiliation: School of Mathematical Sciences, Fudan University, No. 220, Handan Road, Yangpu District, Shanghai 86200433, People’s Republic of China
- MR Author ID: 1101641
- Email: hjiach@fudan.edu.cn
- Received by editor(s): December 27, 2017
- Received by editor(s) in revised form: April 2, 2018
- Published electronically: September 4, 2018
- Additional Notes: The author gratefully acknowledges support from the China Postdoctoral Science Foundation, grant number 2017M611438.
- Communicated by: Guofang Wei
- © Copyright 2018 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 146 (2018), 5391-5407
- MSC (2010): Primary 53C23, 35K05
- DOI: https://doi.org/10.1090/proc/14185
- MathSciNet review: 3866877