
PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 146, Number 12, December 2018, Pages 5409–5419
https://doi.org/10.1090/proc/14188

Article electronically published on September 17, 2018

REMARKS ON THE ABELIAN CONVEXITY THEOREM

LEONARDO BILIOTTI AND ALESSANDRO GHIGI

(Communicated by Michael Wolf)

Abstract. This paper contains some observations on abelian convexity the-
orems. Convexity along an orbit is established in a very general setting using
Kempf–Ness functions. This is applied to give short proofs of the Atiyah–
Guillemin–Sternberg theorem and of abelian convexity for the gradient map
in the case of a real analytic submanifold of complex projective space. Finally
we give an application to the action on the probability measures.

1. Introduction

1.1. Let U be a compact connected Lie group, and let UC be its complexification.
Let (Z, ω) be a Kähler manifold on which UC acts holomorphically. Assume that
U acts in a Hamiltonian fashion with momentum map μ : Z −→ u∗. This means
that ω is U -invariant, μ is equivariant, and for any β ∈ u we have

dμβ = iβZ
ω,

where μβ = 〈μ, β〉 and βZ denotes the fundamental vector field on Z induced by the
action of U . It is well known that the momentum map represents a fundamental
tool in the study of the action of UC on Z. Of particular importance are convexity
theorems [1,15,16,27], which depend on the fact that the functions μβ are Morse–
Bott with even indices.

1.2. More recently the momentum map has been generalized to the following setting
[19–23]. Let G ⊂ UC be a closed connected subgroup of UC that is compatible with
respect to the Cartan decomposition of UC. This means that G is a closed subgroup
of UC such that G = K exp(p), where K = U ∩ G and p = g ∩ iu [22, 24]. The
inclusion ip ↪→ u induces by restriction a K-equivariant map μip : Z −→ (ip)∗.
Using a fixed U -invariant scalar product 〈 , 〉 on u, we identify u ∼= u∗. We also
denote by 〈 , 〉 the scalar product on iu such that multiplication by i is an isometry
of u onto iu. For z ∈ Z let μp(z) ∈ p denote −i times the component of μ(z) in the
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direction of ip. In other words we require that

〈μp(z), β〉 = −〈μ(z), iβ〉,(1.3)

for any β ∈ p. The map μp : Z → p is called the G-gradient map. Given a compact
G-stable subset X ⊂ Z we consider the restriction μp : X −→ p. We also set

μβ
p := 〈μp, β〉 = μ−iβ .

Many fundamental theorems regarding the momentum map also hold for the gra-

dient map. The functions μβ
p are Morse–Bott, although in general not with even

indices. Even so in [20] (see also [4]) the authors prove the following convexity
theorem: let V be a unitary representation of U , and let Y ⊂ P(V ) be a closed
real semialgebraic subset whose real algebraic Zariski closure is irreducible. If a is a
maximal abelian subalgebra of g contained in p and a+ is a positive Weyl chamber,
then μp(Y ) ∩ a+ is a convex polytope. The proof is rather delicate.

One of the goals of the present paper is to give a convexity theorem along an
orbit, i.e., to show that the image of an orbit via the gradient map is convex. This
will be proved in a very general setting using only so-called Kempf–Ness functions.
This allows us to prove the corresponding theorem for the gradient map without
using results from the complex case. As applications we get a simple proof of the
abelian convexity theorem for the gradient map for real analytic submanifolds and
the convexity along an orbit for the gradient map associated to the induced action
on probability measures.

1.4. Using the same notation as above, assume that X is a compact G-invariant
submanifold of Z. In [6, 11] the authors and Zedda studied the action of G on the
set of probability measures on X. This set is not a manifold, but many features of
the action, especially those relating only to a single orbit closure, can be studied
with a formalism very similar to the momentum map. We now recall this formalism.

Let M be a Hausdorff topological space, and let G be a noncompact real reduc-
tive group which acts continuously on M . We can write G = K exp(p), where K
is a maximal compact subgroup of G. Given a function Ψ : M ×G → R, consider
the following properties:

(P1) For any x ∈ M the function Ψ(x, ·) is smooth on G.
(P2) The function Ψ(x, ·) is left–invariant with respect to K, i.e., Ψ(x, kg) =

Ψ(x, g).
(P3) For any x ∈ M , and any ξ ∈ p and t ∈ R:

d2

dt2
Ψ(x, exp(tξ)) ≥ 0.

Moreover:

d2

dt2

∣∣∣∣
t=0

Ψ(x, exp(tξ)) = 0

if and only if exp(Rξ) ⊂ Gx.
(P4) For any x ∈ M , and any g, h ∈ G:

Ψ(x, g) + Ψ(g · x, h) = Ψ(x, hg).

This equation is called the cocycle condition.
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In order to state our fifth condition, let 〈 , 〉 : p∗ × p → R be the duality pairing.
For x ∈ M define F(x) ∈ p∗ by requiring that

(1.5) 〈F(x), ξ〉 = d

dt

∣∣∣∣
t=0

Ψ(x, exp(tξ)).

(P5) The map F : M → p∗ is continuous.

Definition 1.1. Let G be a noncompact real reductive Lie group, let K be a
maximal compact subgroup of G, and let M be a Hausdorff topological space with
a continuous G-action. A Kempf–Ness function for (M , G,K) is a function

Ψ : M ×G → R

that satisfies conditions (P1)–(P5). The map F is called the gradient map of
(M , G,K,Ψ).

By [11, Prop. 5] F : M → p∗ is a K-equivariant map. Since K is compact, we
may fix a K-invariant scalar product 〈·, ·〉 of p and we may identify p∗ ∼= p by means
of 〈·, ·〉. Hence we may think of the gradient map as a p-valued map F : M → p.

Remark 1.1. In [6, 11] a sixth hypothesis is assumed, which is necessary to define
the maximal weight and to deal with stability issues. This hypothesis is not needed
for the arguments of the present paper.

1.6. The original setting [26] for what we call a Kempf–Ness function is the fol-
lowing: let V be a unitary representation of U . For x = [v] ∈ P(V ) and g ∈ UC

set Ψ(x, g) := log(|g−1v|/|v|). This function satisfies (P1)–(P5) with F = μ, the
momentum map. Thus the behaviour of the momentum map is encoded in the
function Ψ. Functions similar to these exist for rather general actions. The follow-
ing result has been proven in [18, §2], [2], [29] for G = UC and in [11, §7] in the
general case.

Proposition 1.1. Let X,G,K be as in §1.2. Then there exists a Kempf–Ness
function Ψ for (X,G,K) satisfying the conditions (P1)–(P5) such that F = μp.

1.7. In the present paper we study abelian convexity theorems. In §2 we give an
easy proof of convexity for the image of an orbit of an abelian group in the setting
of Kempf–Ness functions; see Theorem 2.1. In §3 we apply this to the setting of
the gradient map as in §1.2.

If G = A = exp(a), where a ⊂ p is an abelian subalgebra, we are able to prove
that the image of the gradient map of an A-orbit is convex (Theorem 3.1) without
using the convexity results available in the complex setting (see [23, p. 5]). Our
proof only uses the existence of Kempf–Ness functions.

We also give a new proof of the Atiyah–Guillemin–Sternberg convexity theorem.
Indeed, consider the case where X = Z is compact, T is a compact torus, and
G = TC. Atiyah [1] suggested that the convexity of μ(TC · p) (for p ∈ Z) could
be used to give an alternative proof of the abelian convexity theorem showing that

there always exists p ∈ Z such that μ(TC · p) = μ(Z). Duistermaat [14] proved

that the set of points p with μ(TC · p) = μ(Z) is nonempty and dense (see also
[13]) We give a new proof of this result and we also show that this set is open.
More importantly, we believe that the abstract approach that we follow adds to the
understanding of some basic results in the subject.
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In the case of real analytic submanifolds of Pn(C) our method yields the follow-
ing.

Theorem 1.1. Let X ⊂ Pn(C) be a compact connected real analytic submanifold
that is invariant by A = exp(a), where a ⊂ isu(n + 1) is an abelian subalgebra.
Then

(a) μa(X) is a convex polytope with vertices in μ(XA);
(b) the set {x ∈ X : μa(A · x) = μa(X)} is open and dense;
(c) for any face σ ⊂ μa(X), there is an A-orbit Y such that μa(Y ) = σ.

This result is weaker than the one obtained by Heinzner and Schützdeller [20]
(even in the abelian case). Nevertheless the proof in this note is very simple, and
(b) and (c) are new. So we think that this might be of some interest.

In the last section we apply the result of §2 to the action of G on the set of
probability measures on X (with the notation of §1.4). This yields a simpler and
more natural proof of the convexity theorem for measures obtained in [12].

2. Abstract abelian convexity

The following proposition contains the key idea and is basic to the whole paper.
Let M , G,K, p,Ψ, and F be as in §1.4. Let a ⊂ p be an abelian subalgebra. Then
A := exp(a) ⊂ G is a compatible abelian subgroup.

Proposition 2.1. Let Ψ : M ×A → R be a Kempf–Ness function for (M , A, {e}),
and let F : M → a be the corresponding gradient map. Let x ∈ M , and let Ax

be the stabilizer of x and ax its Lie algebra. Let π : a → a⊥x be the orthogonal
projection. Then π(F(A · x)) is an open convex subset of a⊥x . Moreover, F(A · x) is
an open convex subset of F(x) + a⊥x .

Proof. Set b := a⊥x and consider the function f : b → R, f(v) = Ψ(x, exp(v)). Fix
v, w ∈ b with w 
= 0 and consider the curve γ(t) = v + tw. Set u(t) = f(γ(t)). We
claim that u′′(0) > 0. Using the fact that A is abelian, the cocycle condition yields

u(t) = Ψ(x, exp(v + tw)) = Ψ(x, exp(tw) exp(v))

= Ψ(exp(v) · x, exp(tw)) + Ψ(x, exp(v)),

so

u′(t) =
d

dt
Ψ(exp(v) · x, exp(tw)).

By (P3) we have u′′(0) ≥ 0, and the equality would imply that w ∈ aexp(v)·x = ax,

which is impossible since w ∈ a⊥x . This proves the claim and shows that f is
a strictly convex function on b. Therefore, by a basic result in convex analysis
[17, p. 122], df(b) is an open convex subset of b ∼= (b)∗. Moreover the computation
above also shows that

(2.1) (df)v(w) = 〈F(exp(v) · x), w〉 = 〈π(F(exp(v) · x)), w〉.
Using the fact that A · x = exp(b) · x we conclude that

π(F(A · x)) = π(F(exp(b) · x)) = df(b)

is an open convex set of b. This proves the first assertion. To prove the last assertion
it is enough to check that for any v ∈ a and for any w ∈ ax,

〈F(exp(v) · x), w〉 = 〈F(x), w〉.(2.2)
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Using (1.5) and the cocycle condition we have

〈F(exp(v) · x), w〉 = d

dt

∣∣∣∣
t=0

Ψ(exp(v) · x, exp(tw))

=
d

dt

∣∣∣∣
t=0

Ψ(x, exp(tw) exp(v)).

Using that v and w commute and again the cocycle condition and (1.5) we get

〈F(exp(v) · x), w〉 = d

dt

∣∣∣∣
t=0

Ψ(x, exp(v) exp(tw))

=
d

dt

∣∣∣∣
t=0

(
Ψ(exp(tw) · x, exp(v)) + Ψ(x, exp(tw))

)

=
d

dt

∣∣∣∣
t=0

Ψ(x, exp(v)) + 〈F(x), w〉 = 〈F(x), w〉.

This proves (2.2). �

Corollary 2.1. Let x ∈ M be such that Ax = {e}. Then F(A ·x) is an open convex
subset of a.

Corollary 2.2. Set E := π(F(A · x)). If y ∈ A · x and p := π(F(y)) ∈ ∂E, then
ax � ay.

Proof. Since the A-action on M is continuous, it follows that Ax ⊂ Ay, and so
a⊥y ⊂ a⊥x . Assume by contradiction that ax = ay and let π : a −→ a⊥x be the

orthogonal projection on a⊥x . By Proposition 2.1 the set Ω := π(F(A ·y)) is an open
convex subset of a⊥x . Since A · y ⊂ A · x, we have p ∈ Ω ⊂ E. But this contradicts
the fact that p ∈ ∂E. Thus ax � ay. �

Theorem 2.1. If A · x is compact, then

F(A · x) = F(A · x) = conv
(
F(A · x ∩ MA)

)
.

Proof. Since A · x is compact, F(A · x) = F(A · x). By Proposition 2.1 E := F(A ·x)
is an open convex subset of the affine subspace L := F(x) + a⊥x , while Ē = F(A · x)
is a compact convex subset. Let p ∈ Ē be an extreme point, and let y ∈ A · x
be such that F(y) = x. Again by Proposition 2.1 F(A · y) is a convex subset of
dimension equal to dim a⊥y . Since p is an extreme point, this dimension must be 0,

so a⊥y = {0} and y is a fixed point of A. So the extremal points of E are contained

in F(A · x ∩ MA). This proves the theorem. �

3. Application to the gradient map

In this section we assume that Z,X,G, and K are as in §1.2. Moreover we
assume that A = exp(a), where a ⊂ p is an abelian subalgebra.

Applying Theorem 2.1 we get a new proof of the following result.

Theorem 3.1. Assume that X ⊂ Z is an A-invariant compact submanifold. For
any x ∈ X, μa(A · x) is an open convex subset of μa(x) + a⊥x , its closure coincides
with μa(A · x), it is a polytope, and it is the convex hull of μp(X

A ∩ A · x).
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Proof. By Proposition 1.1, there exists a Kempf–Ness function Ψ for (X,G,K)
satisfying the conditions (P1)–(P5) and such that F = μp. Now, that μa(A · x) is

an open convex subset of μa(x)+a⊥x is proven in Proposition 2.1. That μa(A · x) =
μa(A · x) = conv(μa(A · x∩XA)) is proven in Theorem 2.1 (recall thatX is compact
by assumption). Next observe that XA has finitely many connected components,
since X is a compact manifold, and μa is constant on each of them. �

This convexity theorem along the orbits was proven by Atiyah [1] in the case,
where X = Z and A is a complex torus. The general case has been proven by
Heinzner and Stötzel [23, Prop. 3]. The above proof via Theorem 2.1 is quite
short. Note that the first statement in Theorem 3.1, i.e., that μa(A · x) is an open
convex subset of μa(x) + a⊥x , works even if X is not compact. We mention that
a simple proof of orbit convexity for an action of a complex torus on a projective
manifold can be found in [25]; see also [3, p. 44].

Next we turn to the abelian convexity theorem. Fix an abelian subalgebra a ⊂ p

and set A := exp(a). Given a subset X ⊂ Z and β ∈ a set

W β
max(X) := {x ∈ X : lim

t→+∞
μβ
a (exp(tβ) · x) = max

X
μβ
a}.(3.1)

Proposition 3.1. Assume that Z is compact and let X ⊂ Z be a closed A-invariant
subset. Assume that for any β ∈ a the set W β

max(X) is open and dense in X. Then:

(a) P = μa(X) is a convex polytope with vertices in μa(X
A);

(b) the set {x ∈ X : μa(A · x) = μa(X)} is dense and it is also open if X is a
smooth submanifold of Z;

(c) if σ ⊂ μa(X) is a face of P there exists an A-orbit Y such that μa(Y ) = σ.

Proof. The set ZA has finitely many connected components since Z is compact,
and each component is a smooth submanifold of Z. Moreover, μa is constant on
each component. Therefore μa(Z

A) is a finite set. Since XA = X ∩ ZA, we also
conclude that μa(X

A) is a finite set. Therefore P := conv(μa(X
A)) is a convex

polytope. By Theorem 2.1 if x ∈ X, then μa(A · x) = conv(μa(A · x ∩XA)) ⊂ P .
Hence conv(μa(X)) ⊂ P . The reverse inclusion is obvious, so P = conv μa(X).
Now let ξ1, . . . , ξk be the vertices of P . Choose βi ∈ a such that

{ξ ∈ P : 〈ξ, βi〉 = max
P

〈·, βi〉} = {ξi}.

By our assumption the set W β1
max ∩ · · · ∩W βk

max is open and dense. Fix x ∈ W β1
max ∩

· · · ∩W βk
max and set

yi := lim
t→+∞

exp(tβi) · x.

Then yi ∈ X, and using (1.3) and (3.1) we get

μβi
a (yi) = max

X
μβi
a = max

μa(X)
〈·, βi〉 = max

P
〈·, βi〉.

Therefore μa(yi) = ξi. So ξi ∈ μa(A · x) for any i = 1, . . . , k. But μa(A · x) is
convex by Theorem 2.1. Since μa(A · x) ⊂ μa(X) ⊂ P , we get

μa(A · x) = μa(X) = P.

This proves (a). Next set

W := {x ∈ X : μa(A · x) = μa(X)}.
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We have just proven that W contains W β1
max ∩ · · · ∩W βk

max, so it is dense. Assume
now that X is a smooth submanifold of Z. Fix one of the vertices of P , say ξi, and
consider the set

Ωi := {x ∈ X : A · x ∩ μ−1
a (ξi) 
= ∅}.

We claim that this is an open subset of X. This follows from the stratification
theorem in [22]. Indeed, in the abelian case one can shift the gradient map so we
can assume that ξi = 0 ∈ a. Then Ωi coincides with the stratum corresponding
to the minimum of ||μa||2, and as such it is open. This proves the claim. Finally

observe that W =
⋂k

i=1 Ωi. Thus W is also open in X and (b) is proved. Finally
let σ ⊂ P be a face of P . It is an exposed face, so there exists β ∈ a such that

σ = {ξ ∈ P : 〈ξ, β〉 = max
μa(X)

〈·, β〉}.

Hence μ−1
a (σ) = {x ∈ X : μβ

p (x) = maxX μβ
p}. By (b) there is x ∈ W β

max such that

μa(A · x) = μa(X). Define

ϕ∞ : W ξ
max −→ μ−1(σ), ϕ∞(x) := lim

t�→+∞
exp(tξ) · x.

Since μ−1
a (σ) is A-stable, it follows that A · ϕ∞(x) ⊂ A · x ∩ μ−1

a (σ). On the other
hand, let an be a sequence of elements of A such that an · x �→ θ ∈ A · x ∩ μ−1

a (σ).
Since ϕ∞(θ) = θ, it follows that

θ = lim
n�→∞

ϕ∞(an · x) = lim
n�→∞

an · ϕ∞(x).

Therefore

A · x ∩ μ−1(σ) = A · ϕ∞(x).

Since μa|A·x : A · x → P is a surjective map, μa(A · x ∩ μ−1
a (σ)) = σ. Thus

μa(A · ϕ∞(x)) = σ. �

Now let TC be a complex torus acting on the Kähler manifold Z. The functions
μβ : Z → R (for β ∈ t) are Morse–Bott functions with even indices. Atiyah
proved that the set of maximum points of each μβ is a connected critical manifold.
Therefore the corresponding unstable manifold, which coincides with the set W β

max,
is an open dense subset of Z. Set a = it and A = exp(it). Moreover, TC = A · T ,
ZA = ZT = ZTC

since the action is holomorphic. Finally, μa = iμ and μ(TC · x) =
−iμa(A · x) since μ is T -invariant. Therefore the following theorem immediately
follows from Proposition 3.1.

Theorem 3.2. Let T be a compact torus. Let (Z, ω) be a compact Kähler manifold
on which TC acts holomorphically. Assume that T acts in a Hamiltonian fashion
with momentum map μ : Z −→ t∗. Then there is a TC-orbit O such that μ(O) =
μ(Z). More precisely:

(a) the set {x ∈ Z : μ(TC · x) = μ(Z)} is nonempty, open, and dense;
(b) μ(Z) is a convex polytope with vertices in μ(ZT );
(c) if σ is a face of μ(Z), then there exists a TC-orbit Y such that μ(Y ) = σ.

One can also apply the method of proof used in Proposition 3.1 in the setting
considered by Heinzner and Huckleberry in [18]. In this case Z is a connected
Kähler manifold, not necessarily compact, and X ⊂ Z is a compact irreducible
(complex) analytic subset.
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Theorem 3.3. Let X ⊂ Z be a compact irreducible (complex) analytic subset,
which is invariant by the TC-action. Then:

(a) μ(X) is a convex polytope with vertices in μ(XT );

(b) the set W := {x ∈ X : μ(TC · x) = μ(X)} is nonempty, open, and dense.

Proof. We claim that for ξ ∈ t the set

Wξ := {x ∈ X : TC · x ∩ μ−1(ξ) 
= ∅}

is either empty or open and dense. Indeed by shifting we can assume that ξ = 0.
Hence this is the set of semistable points for the action and the claim follows from
the results in [18]. Set P := conv(μ(X)). This is a polytope with vertices in μ(XT ).
Let ξ1, . . . , ξk be the vertices. Set W ′ := Wξ1 ∩ · · · ∩Wξk . This is an open dense

subset of X. Fix x ∈ W ′. By Theorem 3.1 μ(TC · x) is a convex subset of P .

Since it contains all the vertices we have μ(TC · x) = μ(X) = P . This proves (b)
(which of course was also proved directly in [18]). Moreover, we have just seen that
W ′ ⊂ W . The opposite inclusion is obvious. Hence W = W ′ and (b) is proved. �

One would like to prove convexity for μa(X) for X ⊂ Z a general A-invariant
closed submanifold of Z. In this setting convexity is unknown in general. Convexity
of μa(X) (and also nonabelian convexity) is known to hold if X is a real flag
manifold, thanks to the pioneering paper [28], and more generally if Z is a Hodge
manifold and X is an irreducible semialgebraic subset of Z whose real algebraic
Zariski closure is irreducible, [4, 20].

Using Proposition 3.1 we can give a short argument when X is a compact con-
nected real analytic submanifold of Pn(C). This class is narrower than the one
considered in [20], but it is quite interesting. Above all, we feel that our proof is
rather geometric and very clear in its strategy.

Lemma 3.1. Assume that Z = Pn(C) and that X is a compact connected A-
invariant real analytic submanifold endowed with the restriction of the Fubini–Study
form. Then for any β ∈ a the set W β

max(X) is open and dense in X.

Proof. Since Z = Pn(C), β induces a linear flow on Pn(C) which restricts to the
original one on Z and X. Assume that v ∈ su(n+ 1) is the infinitesimal generator
of the linear flow and let c0 < · · · < cr be the critical values of the function
f([z]) := i〈v(z), z〉/|z|2, that is the Hamiltonian of the flow on Pn(C). Denote by
Ci the critical manifold corresponding to ci and let Wu

i (P
n(C)) be its unstable

manifold. Then Pn(C) =
⊔r

i=0 W
u
i . Moreover, for each j the set

⊔
i≤j W

u
i is

equal to a linear subspace Lj ⊂ Pn(C). This is an elementary computation; see,

e.g., [6, Lemma 7.4]. Since μβ
a = f |X the critical points of μβ

a on X are given by⋃
i(Ci ∩ X). If maxX μβ

a = cj , then X ⊂ Lj , X is not contained in Lj−1, and
W β

max(X) = Wu
j (P

n(C))∩X = X −Lj−1. Assume by contradiction that this set is

not dense in X. Then X∩Lj−1 contains an open subset of X and A := (X∩Lj−1)
0

is not empty. On the other hand A 
= X, since X is not contained in Lj−1. Hence

there is some point x ∈ ∂A = A−A. Fix a real analytic chart ϕ : U → U ′ with x ∈ U
and U ′ an open ball in Rk. Locally around x we have Lj−1 = {h1 = · · · = hp = 0}
for some local holomorphic functions h1, . . . , hp. Therefore the set

U ′′ := {y ∈ U ′ : h1ϕ
−1(y) = · · · = hpϕ

−1(y) = 0}
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contains the open set ϕ(A ∩ U). Therefore U ′′ = U ′, U ⊂ X ∩ Lj−1, and x ∈ A, a
contradiction. �

Thanks to the previous lemma we can apply Proposition 3.1 and we get the
following result.

Theorem 3.4. Assume that Z = Pn(C) with the Fubini study metric. Let X ⊂
Pn(C) be a compact connected A-invariant real analytic submanifold. Then:

(a) P = μa(X) is a convex polytope with vertices in μ(XA);
(b) the set {x ∈ X : μa(A · x) = μa(X)} is open and dense;
(c) if σ ⊂ μa(X) is a face of P there exists an A-orbit Y such that μa(Y ) = σ.

We remark that by [4] the image of the gradient map is independent of the
Kähler metric within a fixed Kähler class.

4. Action on the space of measures

Let Z,X,G, and K be as in §1.2. Denote by P(X) the set of Borel probability
measures on X, which is a compact Hausdorff space when endowed with the weak
topology; see [6, 11] for more details and [5, 7–10] for background and motivation.

Assume that A = exp(a), where a ⊂ p is an Abelian subalgebra. Let ΨA be the
Kempf–Ness function for (X,A, {e}) as in Proposition 1.1. Since A acts on X, we
have an action on the probability measures on X as follows:

A× P(X) → P(X), (g, ν) �→ g∗ν.

In [11] it is proven that this action is continuous with respect to the weak topology
and that the function

ΨP : P(M)×A → R, ΨP(ν, g) :=

∫
M

ΨA(x, g)dν(x),(4.1)

is a Kempf–Ness function for (A,P(M), {e}) in the sense of Definition 1.1. More-
over, the gradient map is given by the formula

F : P(M) → a, F(ν) :=

∫
M

μa(x)dν(x).(4.2)

Since P(X) is compact, Theorem 2.1 gives a short proof of the following result
proved in [12].

Theorem 4.1. Let A = exp(a), where a ⊂ p is an Abelian subalgebra. If ν ∈
P(M), then:

(a) F(A · ν) is a convex set.
(b) F(A · ν) coincides with the convex hull of F

(
P(M)A∩A · ν

)
, where P(M)A=

{ν̃ ∈ P(M) : A · ν̃ = ν̃}.
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