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NOTE ON THE ABSENCE OF REMAINDERS

IN THE WIENER-IKEHARA THEOREM

GREGORY DEBRUYNE AND JASSON VINDAS

(Communicated by Stephan Ramon Garcia)

Abstract. We show that it is impossible to get a better remainder than
the classical one in the Wiener-Ikehara theorem even if one assumes analytic
continuation of the Mellin transform after subtraction of the pole to a half-
plane. We also prove a similar result for the Ingham-Karamata theorem.

1. Introduction

The Wiener-Ikehara theorem is a landmark in 20th-century analysis. It states:

Theorem 1.1. Let S be a non-decreasing function and suppose that

(1) G(s) :=

∫ ∞

1

S(x)x−s−1dx converges for �e s > 1

and that there exists a such that G(s)− a/(s− 1) admits a continuous extension to
�e s ≥ 1. Then

(2) S(x) = ax+ o(x).

This result is well-known in number theory as it leads to one of the quickest proofs
of the prime number theorem. However, it also has important applications in other
fields such as operator theory (see e.g. [1]). Over the last century the Wiener-
Ikehara theorem has been extensively studied and generalized in many ways (e.g.,
[6, 8,9,11,13,16,18,20]). We refer the interested reader to [12, Chap. III] for more
information about the Wiener-Ikehara theorem.

If one wishes to attain a stronger remainder in (2) (compared to o(x)), it is
natural to strengthen the assumptions on the Mellin transform (1). We investigate
here whether one can obtain remainders if the Mellin transform after subtraction of
the pole at s = 1 admits an analytic extension to a half-plane �e s > α where 0 <
α < 1. It is well-known that one can get reasonable error terms in the asymptotic
formula for S if bounds are known on the analytic function G. The question of
obtaining remainders if one does not have such bounds was recently raised by Müger
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[15], who actually conjectured the error term O(x(α+2)/3+ε) could be obtained for
each ε > 0.

We show in this article that this is false. In fact, we shall prove in Section 3
the more general result that no reasonably good remainder can be expected in the
Wiener-Ikehara theorem with solely the classical Tauberian condition (of S being
non-decreasing) and the analyticity of G(s)−A/(s− 1) on �e s > α for 0 < α < 1.
To show this result we will adapt an attractive functional analysis argument given
by Ganelius1 [10, Thm. 3.2.2]. Interestingly, the nature of our problem requires us
to consider a suitable Fréchet space of functions instead of working with a Banach
space.

In Section 4 we shall apply our result on the Wiener-Ikehara theorem to study
another cornerstone in complex Tauberian theory, namely, the Ingham-Karamata
theorem for Laplace transforms [12, Chap. III] (see [7, 8] for sharp versions of it).
Notably, a very particular case of this theorem captured special attention when
Newman found an elementary contour integration proof that leads to a simple
deduction of the prime number theorem; in fact, this proof is nowadays a chapter
in various popular expository textbooks in analysis [5,14]. We will show that, just
as for the Wiener-Ikehara theorem, no reasonable error term can be obtained in
the Ingham-Karamata theorem under just an analytic continuation hypothesis on
the Laplace transform. On the other hand, the situation is then pretty much the
same as for the Wiener-Ikehara theorem: error terms can be achieved if the Laplace
transform satisfies suitable growth assumptions. We point out that the problem of
determining such growth conditions on the Laplace transform has been extensively
studied in recent times [2, 4, 17] and such results have numerous applications in
operator theory and in the study of the asymptotic behavior of solutions to various
evolution equations.

2. Some lemmas

We start with some preparatory lemmas that play a role in our constructions.
The first one is a variant of the so-called smooth variation theorem from the theory
of regularly varying functions [3, Thm. 1.8.2, p. 45].

Lemma 2.1. Let � be a positive non-increasing function on [0,∞) such that �(x) =
o(1) (as x → ∞). Then, there is a positive smooth function L such that

�(x) � L(x) = o(1),

and, for some positive C, A, and B,

(3)
∣∣∣L(n)(x)

∣∣∣ ≤ CAnn!x−n, for all x ≥ B and n ∈ N.

Proof. We consider the Poisson kernel of the real line

P (x, y) =
y

π(y2 + x2)
=

i

2π

(
1

x+ iy
− 1

x− iy

)
.

1According to him [10, p. 3], the use of functional analysis arguments to avoid cumbersome
constructions of counterexamples in Tauberian theory was suggested by L. Hörmander.



THE ABSENCE OF REMAINDERS IN THE WIENER-IKEHARA THEOREM 5099

Differentiating the last expression with respect to y, it is clear that we find

∣∣∣∣∂
nP

∂y
(x, y)

∣∣∣∣ ≤ 2n+1n!yn+1

π(y2 + x2)1+n
max

0≤j≤n+1
|x/y|j

<
2n+1n!

π(y2 + x2)(1+n)/2
, for all n ≥ 1.

We set

L(y) =

∫ ∞

0

�(yx)P (x, 1)dx =

∫ ∞

0

�(x)P (x, y)dx.

By the dominated convergence theorem, we have L(y) = o(1). Since � is non-
increasing and P (x, 1) is positive, it follows that

L(y) ≥
∫ 1

0

�(y)P (x, 1)dx =
�(y)

4
.

For the derivatives we have
∣∣L(n)(y)

∣∣ ≤ �(0)2nn!y−n for all n ∈ N and y > 0. �

We also need to study the analytic continuation of the Laplace transform of
functions satisfying the regularity assumption (3).

Lemma 2.2. Suppose that L ∈ L1
loc[0,∞) satisfies the regularity assumption (3)

for some A,B,C > 0, and set θ = arccos(1/(1 + A)). Then its Laplace transform
L{L; s} =

∫ ∞
0

e−sxL(x)dx converges for �e s > 0 and admits analytic continuation
to the sector −π + θ < arg s < π − θ.

Proof. It is clear that F (s) =
∫ ∞
0

e−sxL(x)dx converges for �e s > 0. Since the
Laplace transform of a compactly supported function is entire, we may suppose
that L is supported on [B,∞). Since we can write

F (s) = e−sB

∫ ∞

0

e−sxL(x+B)dx,

we may w.l.o.g. assume B = 0 and replace x−n in the estimates for L(n)(x) by
(1 + x)−n. We consider the kth derivative of F , namely (−1)k

∫ ∞
0

xke−sxL(x)dx.
We use integration by parts k + 2 times to find

F (k)(s) = (−1)k
k!L(0)

sk+1
+ (−1)k

(k + 1)!L′(0)

sk+2
+

(−1)k

sk+2

∫ ∞

0

(L(x)xk)(k+2)e−sxdx.

Because of the regularity assumption (3) the latter integral absolutely converges,
and hence F admits a C∞-extension on the imaginary axis except possibly at the
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origin. The bounds (3) actually give for arbitrary ε > 0:
∣∣∣F (k)(it)

∣∣∣ ≤ |L(0)|
|t|

k!

|t|k
+

|L′(0)|
|t|2

(k + 1)!

|t|k

+
1

|t|k+2

∫ ∞

0

k+2∑
j=2

(
k + 2

j

) ∣∣∣L(j)(x)
∣∣∣ k!

(j − 2)!
xj−2dx

≤ C ′ (1 + |t|)(k + 1)!

|t|k+2
+

1

|t|k+2

∫ ∞

0

k+2∑
j=2

CAj (k + 2)!k!

(k + 2− j)!(j − 2)!
(1 + x)−2dx

≤ C ′ (1 + |t|)(k + 1)!

|t|k+2
+

A2Cπ(k + 2)!

2 |t|k+2

k∑
j=0

Aj

(
k

j

)

≤ Cε
(1 + |t|)

|t|2
k!(1 +A+ ε)k

|t|k
,

where Cε depends only on ε and L. Therefore, F admits an analytic extension to
the disk around it with radius |t| /(1 + A). The union of all such disks and the
half-plane �e s > 0 is precisely the sector in the statement of the lemma. �

3. Absence of remainders in the Wiener-Ikehara theorem

We are ready to show our main theorem, which basically tells us that no remain-
der of the form O(xρ(x)) with ρ(x) a function tending arbitrarily slowly to 0 could
be expected in the Wiener-Ikehara theorem from just the hypothesis of analytic
continuation of G(s) − a/(s − 1) to a half-plane containing �e s ≥ 1. As custom-
ary, the Ω below stands for the Hardy-Littlewood symbol, namely, the negation of
Landau’s o symbol. Our general reference for functional analysis is the textbook
[19].

Theorem 3.1. Let ρ be a positive function, let a > 0, and let 0 < α < 1. Suppose
that every non-decreasing function S on [1,∞), whose Mellin transform G(s) is
such that G(s)− a/(s− 1) admits an analytic extension to �e s > α, satisfies

S(x) = ax+O(xρ(x)).

Then, one must necessarily have

ρ(x) = Ω(1).

Proof. Since a > 0, we may actually assume that the “Tauberian theorem” hypoth-
esis holds for every possible constant a > 0. Assume that ρ(x) → 0. Then, one can
choose a positive non-increasing function �(x) → 0 such that �(log x)/ρ(x) → ∞.
We now apply Lemma 2.1 to � to get a smooth function L with �(x) � L(x) → 0 and
the estimates (3) on its derivatives. We set xρ(x) = 1/δ(x). If we manage to show
that δ(x) = O(1/xL(log x)), then one obtains a contradiction with �(log x)/ρ(x) →
∞ and hence ρ(x) 	→ 0. We thus proceed to show that δ(x) = O(1/xL(log x)).
Obviously, we may additionally assume that L satisfies

(4) L(x) 
 x−1/2.

We are going to define two Fréchet spaces. The first one consists of all Lipschitz
continuous functions on [1,∞) such that their Mellin transforms can be analytically
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continued to �es > α and continuously extended to the closed half-plane �es ≥ α.
We topologize it via the countable family of complete norms

‖T‖n,1 = ess sup
x

|T ′(x)|+ sup
�e s≥α,|�m s|≤n

|GT (s)| ,

where GT stands for (the analytic continuation of) the Mellin transform of T . The
second Fréchet space is defined via the norms

‖T‖n,2 = sup
x

|T (x)δ(x)|+ ‖T‖n,1 .

The hypothesis in the theorem ensures that the two spaces have the same elements.
The verification of completeness with respect to these two families of norms is
standard and we therefore omit it. Obviously the inclusion mapping from the
second space into the first one is continuous. Hence, by the open mapping theorem,
the inclusion mapping from the first space into the second one is also continuous.
Therefore, there exist sufficiently large N and C such that

(5) sup
x

|T (x)δ(x)| ≤ C ‖T‖N,1

for all T in our Fréchet space. This inequality extends to the completion of the
Fréchet space with regard to the norm ‖ · ‖N,1. We note that any function T for

which T ′(x) = o(1), T (1) = 0, and whose Mellin transform has analytic continua-
tion in a neighborhood of {s : �es ≥ α, |�m s| ≤ N} is in that completion. Indeed,
let ϕ ∈ S(R) be such that ϕ(0) = 1 and its Fourier transform has compact support.

Then T̃λ(x) :=
∫ x

1
T ′(u)ϕ(λ logu)du converges to T as λ → 0+ in the norm ‖ · ‖N,1.

We now consider

Tb(x) :=

∫ x

1

L(log u) cos(b log u)du.

Obviously the best Lipschitz constant for Tb is bounded by the supremum of L. Its
Mellin transform is

Gb(s) =
1

2s
(L{L; s− 1 + ib}+ L{L; s− 1− ib}) .

Because of Lemma 2.2 it follows that Gb is analytic in {s : �e s ≥ α, |�m s| ≤ N}
for all sufficiently large b; let us say for every b > M . Hence, the norm ‖Tb‖N,1

is uniformly bounded in b for b ∈ [M,M + 1]. A quick calculation shows for
b ∈ [M,M + 1] that

Tb(x) :=
xL(log x)

b2 + 1
(cos(b log x) + b sin(b log x)) +O

(
x

log x

)
,

where the O-constant is independent of b. For each y large enough there is b ∈
[M,M +1] such that sin(b log y) = 1. Therefore, for y sufficiently large, taking also
(4) into account, we have

sup
b∈[M,M+1]

Tb(y) ≥ inf
b∈[M,M+1]

byL(log y)

b2 + 1
+O

(
y

log y

)
≥ CMyL(log y),
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with CM a positive constant. Consequently, for all sufficiently large y, the inequality
(5) yields

δ(y) ≤ sup
b∈[M,M+1]

Tb(y)δ(y)

CMyL(log y)
≤ sup

b∈[M,M+1]

sup
x

|Tb(x)δ(x)|
CMyL(log y)

≤ C

CMyL(log y)
sup

b∈[M,M+1]

‖Tb‖N,1 = O

(
1

yL(log y)

)
.

�

4. The Ingham-Karamata theorem

We start by stating the Ingham-Karamata theorem. A real-valued function τ is
called slowly decreasing [12] if for each ε > 0 there is δ > 0 such that

lim inf
x→∞

inf
h∈[0,δ]

(τ (x+ h)− τ (x)) > −ε.

Theorem 4.1. Let τ ∈ L1
loc[0,∞) be slowly decreasing and have convergent Laplace

transform

L{τ ; s} =

∫ ∞

0

τ (x)e−sxdx for �e s > 0.

Suppose that L{τ ; s} has a continuous extension to the imaginary axis. Then,

τ (x) = o(1).

We also have the ensuing result on the absence of remainders in the Ingham-
Karamata theorem.

Theorem 4.2. Let η be a positive function and let −1 < α < 0. Suppose that
every slowly decreasing function τ ∈ L1

loc[0,∞), whose Laplace transform converges
on �e s > 0 and has an analytic continuation to the half-plane �e s > α, satisfies

τ (x) = O(η(x)).

Then, we necessarily have

η(x) = Ω(1).

Proof. We reduce the problem to Theorem 3.1. So set ρ(x) = η(log x), and we will
show that ρ(x) = Ω(1). Suppose that S is non-decreasing on [1,∞) such that its
Mellin transform G(s) converges on �e s > 1 and

G(s)− 1

s− 1

analytically extends to �e s > 1 + α. By the Wiener-Ikehara theorem τ (x) =
e−xS(ex)−1 = o(1), and in particular it is slowly decreasing. Its Laplace transform

L{τ ; s} = G(s+ 1)− 1

s

is analytic on �e s > α, and thus τ (x) = O(η(x)), or, equivalently, S(x) = x +
O(xρ(x)). Since S was arbitrary, Theorem 3.1 gives at once ρ(x) = Ω(1). The
proof is complete. �
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[18] Gérald Tenenbaum, Introduction to analytic and probabilistic number theory, 3rd ed., Gradu-
ate Studies in Mathematics, vol. 163, American Mathematical Society, Providence, RI, 2015.
Translated from the 2008 French edition by Patrick D. F. Ion. MR3363366

[19] François Trèves, Topological vector spaces, distributions and kernels, Academic Press, New
York-London, 1967. MR0225131

[20] Wen-Bin Zhang, Wiener-Ikehara theorems and the Beurling generalized primes, Monatsh.
Math. 174 (2014), no. 4, 627–652, DOI 10.1007/s00605-013-0597-8. MR3233115

Department of Mathematics, Ghent University, Krijgslaan 281, B 9000 Gent, Bel-

gium

Email address: gregory.debruyne@ugent.be

Department of Mathematics, Ghent University, Krijgslaan 281, B 9000 Gent, Bel-

gium

Email address: jasson.vindas@ugent.be

https://www.ams.org/mathscinet-getitem?mr=1397559
https://www.ams.org/mathscinet-getitem?mr=3438332
https://www.ams.org/mathscinet-getitem?mr=898871
https://www.ams.org/mathscinet-getitem?mr=3509911
https://www.ams.org/mathscinet-getitem?mr=3445361
https://www.ams.org/mathscinet-getitem?mr=3680551
https://www.ams.org/mathscinet-getitem?mr=0068667
https://www.ams.org/mathscinet-getitem?mr=0499898
https://www.ams.org/mathscinet-getitem?mr=607121
https://www.ams.org/mathscinet-getitem?mr=2073637
https://www.ams.org/mathscinet-getitem?mr=2138049
https://www.ams.org/mathscinet-getitem?mr=2827550
https://www.ams.org/mathscinet-getitem?mr=3785794
https://www.ams.org/mathscinet-getitem?mr=3145162
https://www.ams.org/mathscinet-getitem?mr=3397278
https://www.ams.org/mathscinet-getitem?mr=3363366
https://www.ams.org/mathscinet-getitem?mr=0225131
https://www.ams.org/mathscinet-getitem?mr=3233115

	1. Introduction
	2. Some lemmas
	3. Absence of remainders in the Wiener-Ikehara theorem
	4. The Ingham-Karamata theorem
	References

