RESIDUES FOR MAPS GENERICALLY TRANSVERSE TO DISTRIBUTIONS

LEONARDO M. CÂMARA AND MAURÍCIO CORRÊA
(Communicated by Filippo Brocci)

Abstract. We show a residues formula for maps generically transversal to regular holomorphic distributions.

1. Introduction

Let $f: X \longrightarrow Y$ be a singular holomorphic map between complex manifolds X and Y, with $\operatorname{dim}(X):=n \geq m=: \operatorname{dim}(Y)$, having generic fiber F. Consider the singular set of f defined by

$$
S:=\operatorname{Sing}(f)=\{p \in X: \operatorname{rank}(d f(p))<m\} .
$$

If $Y=C$ is a curve, Iversen in [11 proved the multiplicity formula

$$
\chi(X)-\chi(F) \cdot \chi(C)=(-1)^{n} \sum_{p \in \operatorname{Sing}(f)} \mu_{p}(f),
$$

where $\mu_{p}(f)$ is the Milnor number of f at p. Izawa and Suwa [14] generalized Iversen's result for the case where X is possibly a singular variety.

A generalization of the multiplicity formula for maps was given by Diop in [7. In his work he generalized some formulas involving the Chern classes given previously by Iversen [11, Brasselet 3, 4, and Schwartz [17]. More precisely, Diop showed that if S is smooth and $\operatorname{dim}(S)=m-1$, then

$$
\chi(X)-\chi(F) \chi(Y)=(-1)^{n-m+1} \sum_{j} \mu_{j} \int_{S_{j}} c_{q-1}\left[\left.\left(f^{*} T Y\right)\right|_{S_{j}}-\mathcal{L}_{j}\right],
$$

where $S=\bigcup S_{j}$ is the decomposition of S into irreducible components, $\mu_{j}=$ $\mu\left(f \mid \Sigma_{j}\right)$ is the Milnor number of the restriction of f to a transversal section Σ_{j} to S_{j} at a regular point $p_{j} \in S_{j}$, and \mathcal{L}_{j} is the line bundle over S_{j} given by the decomposition $f^{*} d f\left(\left.T X\right|_{S_{j}}\right) \oplus \mathcal{L}_{j}=\left.f^{*}(T Y)\right|_{S_{j}}$.

On the other hand, Brunella in [5] introduced the notion of tangency index of a germ of curve with respect to a germ of holomorphic foliation: given a reduced curve C and a foliation \mathcal{F} (possibly singular) on a complex compact surface, suppose that C is not invariant by \mathcal{F} and that C and \mathcal{F} are given locally by $\{f=0\}$ and a vector

[^0]field v, respectively. The tangency index $I_{p}(\mathcal{F}, C)$ of C with respect to \mathcal{F} at p is given by the intersection number
$$
I_{p}(\mathcal{F}, C)=\operatorname{dim}_{\mathbb{C}} \mathcal{O}_{2} /(f, v(f))
$$

Using this index, Brunella proved the formula

$$
c_{1}(\mathcal{O}(C))^{2}-c_{1}\left(T_{\mathcal{F}}\right) \cap c_{1}(\mathcal{O}(C))=\sum_{p \in \operatorname{Tang}(\mathcal{F}, C)} I_{p}(\mathcal{F}, C),
$$

where $T_{\mathcal{F}}$ is the tangent bundle of \mathcal{F} and $\operatorname{Tang}(\mathcal{F}, C)$ denotes the non-transversality loci of C with respect to \mathcal{F}. In [9] and [10, T. Honda also studied Brunella's tangency formula. Distributions and foliations transverse to certain domains in \mathbb{C}^{n} have been studied by Bracci and Scárdua in [2] and by Ito and Scárdua in [12].

Recently, Izawa [13] generalized certain results due to Diop [7] in the foliated context. More precisely, let $f: X \longrightarrow(Y, \mathcal{F})$ be a holomorphic map such that \mathcal{F} is a regular holomorphic foliation of codimension one in Y. Let $S(f, \mathcal{F})$ be the set of points where f fails to be transverse to \mathcal{F}. Suppose $S(f, \mathcal{F})$ is given by isolated points and let $\widetilde{\mathcal{F}}:=f^{*} \mathcal{F}$. Since \mathcal{F} is regular, we may find local coordinates in a neighborhood of $p \in \operatorname{Sing}(f)$ and $f(p)$ in such a way that $f=\left(f_{1}, \ldots, f_{m}\right)$ and $\widetilde{\mathcal{F}}$ is given by $\operatorname{ker}\left(d f_{m}\right)$ nearby p. If we pick $g_{i}:=\frac{\partial f_{m}}{\partial x_{i}}$ (i.e., $d f_{m}=g_{1} d x_{1}+\cdots+g_{n} d x_{n}$), then
$\chi(X)-\sum_{i=1}^{r} f_{*}\left(c_{n-i}\left(T_{X}\right) \cap[X]\right) \cap c_{1}\left(\mathcal{N}_{\mathcal{F}}\right)^{i}=(-1)^{n} \sum_{p \in S(f, \mathcal{F})} \operatorname{Res}_{p}\left[\begin{array}{c}d g_{1} \wedge \cdots \wedge d g_{m} \\ g_{1}, \ldots, g_{m}\end{array}\right]$, where $\mathcal{N}_{\mathcal{F}}$ denotes the normal sheaf of \mathcal{F}.

In this paper we generalize the above results for a regular distribution \mathcal{F} in Y of any codimension with the following residual formula for the non-transversality points of $f(X)$ with respect to \mathcal{F}.

In order to state our main result, let us introduce some notions. Let $f: X \longrightarrow$ (Y, \mathcal{F}) be a holomorphic map and suppose that X and Y are projective manifolds. We say that the set of points in X where f fails to be transversal to \mathcal{F} is the ramification locus of f with respect to \mathcal{F}, and denote it by $S(f, \mathcal{F})$. The set $R(f, \mathcal{F}):=f(S(f, \mathcal{F}))$ is called the branch locus or the set of branch points of f with respect to \mathcal{F}. Let $S(f, \mathcal{F})=\bigcup S_{j}$ be the decomposition of S into irreducible components. Then we denote by $\mu\left(f, \mathcal{F}, S_{j}\right)$ the multiplicity of S_{j} and call it the ramification multiplicity of f along S_{j} with respect to \mathcal{F}. As usual, we denote by [W] the class in the Chow group of X of the subvariety $W \subset X$. The class $f_{*}\left[S_{j}\right]=:\left[R_{j}\right]$ is called a branch class of f. Observe that $R(f, \mathcal{F})$ is the set of tangency points between $f(X)$ and \mathcal{F} if $\operatorname{dim}(X) \leq \operatorname{dim}(Y)$.
Theorem 1.1. Let $f: X \longrightarrow(Y, \mathcal{F})$ be a holomorphic map of generic rank r and let \mathcal{F} be a non-singular distribution of codimension k on Y. Suppose the ramification locus of f with respect to \mathcal{F} has codimension $n-k+1$. Then

$$
\begin{aligned}
& f_{*}\left(c_{n-k+1}\left(T_{X}\right) \cap[X]\right)+\sum_{i=1}^{r}(-1)^{i} f_{*}\left(c_{n-k+1-i}\left(T_{X}\right) \cap[X]\right) \cap s_{i}\left(\mathcal{N}_{\mathcal{F}}^{*}\right) \\
& \quad=(-1)^{n-k+1} \sum_{R_{j} \subset R} \mu\left(f, \mathcal{F}, S_{j}\right)\left[R_{j}\right]
\end{aligned}
$$

where $s_{i}\left(\mathcal{N}_{\mathcal{F}}^{*}\right)$ is the i-th Segre class of $\mathcal{N}_{\mathcal{F}}^{*}$.

Some consequences of this result are the following.
Corollary 1.2 (Izawa). If $k=1$, then
$\chi(X)-\sum_{i=1}^{r} f_{*}\left(c_{n-i}\left(T_{X}\right) \cap[X]\right) \cap c_{1}\left(\mathcal{N}_{\mathcal{F}}\right)^{i}=(-1)^{n} \sum_{p \in S(f, \mathcal{F})} \operatorname{Res}_{p}\left[\begin{array}{c}d g_{1} \wedge \cdots \wedge d g_{m} \\ g_{1}, \cdots, g_{m}\end{array}\right]$.
In fact, if $k=1$ we have $c_{n}\left(T_{X}\right) \cap[X]=\chi(X)$ by the Chern-Gauss-Bonnet Theorem. Since $\mathcal{N}_{\mathcal{F}}^{*}$ is a line bundle, then $s_{i}\left(\mathcal{N}_{\mathcal{F}}^{*}\right)=(-1)^{i} c_{1}\left(\mathcal{N}_{\mathcal{F}}^{*}\right)^{i}$ for all i. The above Izawa formula [13, Theorem 4.1] implies the multiplicity formula

$$
\chi(X)-\chi(F) \cdot \chi(C)=(-1)^{n} \sum_{p \in \operatorname{Sing}(f)} \mu_{p}(f)
$$

Corollary 1.3 (Tangency formulae). Let $X \subset Y$ be a k-dimensional submanifold generically transverse to a non-singular distribution \mathcal{F} on Y of codimension k. Then

$$
\left[c_{1}\left(N_{X \mid Y}\right)-c_{1}\left(T_{\mathcal{F}}\right)\right] \cap[X]=\sum_{R_{j} \subset R} \mu\left(f, \mathcal{F}, S_{j}\right)\left[R_{j}\right]
$$

In particular, if $\left.\operatorname{det}\left(T_{\mathcal{F}}\right)\right|_{X}-\operatorname{det}\left(N_{X \mid Y}\right)$ is ample, then X is tangent to \mathcal{F}.
If $X=C$ is a curve on a surface Y, we have $[C]=c_{1}(\mathcal{O}(C))=c_{1}\left(N_{X \mid Y}\right)$. This yields Brunella's formula

$$
c_{1}(\mathcal{O}(C))^{2}-c_{1}\left(T_{\mathcal{F}}\right) \cap c_{1}(\mathcal{O}(C))=\sum_{p \in \operatorname{Tang}(\mathcal{F}, C)} I_{p}(\mathcal{F}, C)
$$

Moreover, this formula coincides with Honda's formula [10] in case \mathcal{F} is a onedimensional foliation and X is a curve.

In Section 3, we prove Theorem 1.1 and Corollary 1.3

2. Holomorphic distributions

Let X be a complex manifold of dimension n.
Definition 2.1. A codimension k distribution \mathcal{F} on X is given by an exact sequence

$$
\begin{equation*}
\mathcal{F}: 0 \longrightarrow \mathcal{N}_{\mathcal{F}}^{*} \longrightarrow \Omega_{X}^{1} \longrightarrow \Omega_{\mathcal{F}} \longrightarrow 0 \tag{1}
\end{equation*}
$$

where $\mathcal{N}_{\mathcal{F}}^{*}$ is a coherent sheaf of rank $k \leq \operatorname{dim}(X)-1$ and $\Omega_{\mathcal{F}}$ is a torsion free sheaf. We say that \mathcal{F} is a foliation if at the level of local sections we have $d\left(\mathcal{N}_{\mathcal{F}}^{*}\right) \subset \mathcal{N}_{\mathcal{F}}^{*} \wedge \Omega_{X}^{1}$. The singular set of the distribution \mathcal{F} is defined by $\operatorname{Sing}(\mathcal{F}):=\operatorname{Sing}\left(\Omega_{\mathcal{F}}\right)$. We say that \mathcal{F} is regular if $\operatorname{Sing}(\mathcal{F})=\emptyset$.

Taking determinants of the map $\mathcal{N}_{\mathcal{F}}^{*} \longrightarrow \Omega_{X}^{1}$, we obtain a map

$$
\operatorname{det}\left(\mathcal{N}_{\mathcal{F}}^{*}\right) \longrightarrow \Omega_{X}^{k}
$$

which induces a twisted holomorphic k-form $\omega \in H^{0}\left(X, \Omega_{X}^{k} \otimes \operatorname{det}\left(\mathcal{N}_{\mathcal{F}}^{*}\right)^{*}\right)$. Therefore, a distribution can be induced by a twisted holomorphic k-form

$$
H^{0}\left(X, \Omega_{X}^{k} \otimes \operatorname{det}\left(\mathcal{N}_{\mathcal{F}}^{*}\right)^{*}\right)
$$

which is locally decomposable outside the singular set of \mathcal{F}. That is, for each point $p \in X \backslash \operatorname{Sing}(\mathcal{F})$ there exists a neighborhood U and holomorphic 1-forms $\omega_{1}, \ldots, \omega_{k} \in H^{0}\left(U, \Omega_{U}^{1}\right)$ such that

$$
\left.\omega\right|_{U}=\omega_{1} \wedge \cdots \wedge \omega_{k}
$$

Moreover, if \mathcal{F} is a foliation, then by Definition 2.1 we have

$$
d \omega_{i} \wedge \omega_{1} \wedge \cdots \wedge \omega_{k}=0
$$

for all $i=1, \ldots, k$. The tangent sheaf of \mathcal{F} is the coherent sheaf of rank $(n-k)$ given by

$$
T_{\mathcal{F}}=\left\{v \in T_{X} ; i_{v} \omega=0\right\}
$$

The normal sheaf of \mathcal{F} is defined by $\mathcal{N}_{\mathcal{F}}=T_{X} / T_{\mathcal{F}}$. It is worth noting that $\mathcal{N}_{\mathcal{F}} \neq$ $\left(\mathcal{N}_{\mathcal{F}}^{*}\right)^{*}$ whenever $\operatorname{Sing}(\mathcal{F}) \neq \emptyset$. Dualizing the sequence (1) one obtains the exact sequence

$$
0 \longrightarrow T_{\mathcal{F}} \longrightarrow T_{X} \longrightarrow\left(\mathcal{N}_{\mathcal{F}}^{*}\right)^{*} \longrightarrow \operatorname{Ext}^{1}\left(\Omega_{\mathcal{F}}, \mathcal{O}_{X}\right) \longrightarrow 0
$$

so that there is an exact sequence

$$
0 \longrightarrow \mathcal{N}_{\mathcal{F}} \longrightarrow\left(\mathcal{N}_{\mathcal{F}}^{*}\right)^{*} \longrightarrow \operatorname{Ext}^{1}\left(\Omega_{\mathcal{F}}, \mathcal{O}_{X}\right) \longrightarrow 0
$$

Definition 2.2. Let $V \subset X$ be an analytic subset. We say that V is tangent to \mathcal{F} if $T_{p} V \subset\left(T_{\mathcal{F}}\right)_{p}$, for all $p \in V \backslash \operatorname{Sing}(V)$.

3. Proof of the main results

We begin by proving the main theorem.
Proof of Theorem 1.1. Consider a map $f: X \longrightarrow Y$ and let (U, x) and (V, y) be local systems of coordinates for X and Y such that $f(U) \subset V$. Since \mathcal{F} is a regular distribution, we may suppose that it is induced on U by the k-form $\omega_{1} \wedge \cdots \wedge \omega_{k}$. Therefore, the ramification locus of f with respect to \mathcal{F} on U is given by

$$
\left.S(f, \mathcal{F})\right|_{U}=\left\{f^{*}\left(\omega_{1} \wedge \cdots \wedge \omega_{k}\right)=f^{*}\left(\omega_{1}\right) \wedge \cdots \wedge f^{*}\left(\omega_{k}\right)=0\right\} .
$$

In other words, the ramification locus $S(f, \mathcal{F})$ coincides with $\operatorname{Sing}\left(f^{*}(\mathcal{F})\right)$.
Let us denote $\widetilde{\mathcal{F}}:=f^{*}(\mathcal{F})$. Let $\left\{U_{\alpha}\right\}$ be a covering of Y such that the distribution \mathcal{F} is induced on U_{α} by the holomorphic 1-forms $\omega_{1}^{\alpha}, \ldots, \omega_{k}^{\alpha}$. Hence, on $U_{\alpha} \cap U_{\beta} \neq \emptyset$ we have $\left(\omega_{1}^{\alpha} \wedge \cdots \wedge \omega_{k}^{\alpha}\right)=g_{\alpha \beta}\left(\omega_{1}^{\beta} \wedge \cdots \wedge \omega_{k}^{\beta}\right)$, where $\left\{g_{\alpha \beta}\right\}$ is a cocycle generating the line bundle $\operatorname{det}\left(\mathcal{N}_{\mathcal{F}}^{*}\right)^{*}$. Then the distribution $\widetilde{\mathcal{F}}$ is induced locally by $f^{*}\left(\omega_{1}^{\alpha}\right), \ldots, f^{*}\left(\omega_{k}^{\alpha}\right)$. This shows that $\mathcal{N}_{\mathcal{F}}^{*}$ is locally free. Therefore the singular set of $\widetilde{\mathcal{F}}$ is the loci of degeneracy of the induced map

$$
\mathcal{N}_{\widetilde{\mathcal{F}}}^{*} \longrightarrow \Omega_{X}^{1}
$$

By hypothesis, the ramification locus of f with respect to \mathcal{F}, which is given by $\operatorname{Sing}(\widetilde{\mathcal{F}})$, has codimension $n-k+1$. Then it follows from the Thom-Porteous formula [8] that

$$
c_{n-k+1}\left(\Omega_{X}^{1}-\mathcal{N}_{\widehat{\mathcal{F}}}^{*}\right) \cap[X]=\sum_{j} \mu_{j}\left[S_{j}\right],
$$

where μ_{j} is the multiplicity of the irreducible component S_{i}. It follows from $c\left(\Omega_{X}^{1}-\mathcal{N}_{\widetilde{\mathcal{F}}}^{*}\right)=c\left(\Omega_{X}^{1}\right) \cdot s\left(\mathcal{N}_{\widetilde{\mathcal{F}}}^{*}\right)$ that

$$
c_{n-k+1}\left(\Omega_{X}^{1}-\mathcal{N}_{\widetilde{\mathcal{F}}}^{*}\right)=\sum_{i=0}^{n-k+1} c_{n-k+1-i}\left(\Omega_{X}^{1}\right) \cap s_{i}\left(\mathcal{N}_{\widetilde{\mathcal{F}}}^{*}\right)
$$

where $s_{i}\left(\mathcal{N}_{\widetilde{\mathcal{F}}}^{*}\right)$ is the i-th Segre classe of $\mathcal{N}_{\widetilde{\mathcal{F}}}^{*}$. Since $X_{0}:=X-\operatorname{Sing}(\widetilde{\mathcal{F}})$ is a dense and open subset of X, by taking the cap product we have

$$
\begin{aligned}
c_{n-k+1}\left(\Omega_{X}^{1}-\mathcal{N}_{\widetilde{\mathcal{F}}}^{*}\right) \cap[X] & =c_{n-k+1}\left(\Omega_{X}^{1}-\mathcal{N}_{\widetilde{\mathcal{F}}}^{*}\right) \cap\left[X_{0}\right] \\
& =\sum_{i=0}^{n-k+1}\left(c_{n-k+1-i}\left(\Omega_{X}^{1}\right)\right) \cap\left[X_{0}\right] \cap s_{i}\left(f^{*} \mathcal{N}_{\mathcal{F}}^{*}\right) .
\end{aligned}
$$

It follows from the projection formula that
$\left.f_{*}\left(c_{n-k+1}\left(\Omega_{X}^{1}-\mathcal{N}_{\mathcal{F}}^{*}\right)\right) \cap[X]\right)=\sum_{i=0}^{n-k+1} f_{*}\left(c_{n-k+1-i}\left(\Omega_{X}^{1}\right) \cap[X]\right) \cap s_{i}\left(\mathcal{N}_{\mathcal{F}}^{*}\right)=\sum_{j} \mu_{j} f_{*}\left[S_{j}\right]$.

Now, we prove our tangency formulae as a consequence of the main theorem.
Proof of Corollary 1.3, Let $i: X \hookrightarrow Y$ be the inclusion map. It follows from Theorem 1.1 that

$$
i_{*}\left(c_{1}\left(T_{X}\right) \cap[X]\right)-i_{*}([X]) \cap s_{1}\left(\mathcal{N}_{\mathcal{F}}^{*}\right)=-\sum_{R_{j} \subset R} \mu\left(f, \mathcal{F}, S_{j}\right)\left[R_{j}\right]
$$

On the one hand, we have $c_{1}\left(\left.T_{Y}\right|_{X}\right)=c_{1}\left(N_{X \mid Y}\right)+c_{1}\left(T_{X}\right)$, and on the other hand, we have $c_{1}\left(\left.T_{Y}\right|_{X}\right)=c_{1}\left(\left.T_{\mathcal{F}}\right|_{X}\right)+c_{1}\left(\left.\mathcal{N}_{\mathcal{F}}\right|_{X}\right)$. Since $s_{1}\left(\mathcal{N}_{\mathcal{F}}^{*}\right)=-c_{1}\left(\mathcal{N}_{\mathcal{F}}^{*}\right)=c_{1}\left(\mathcal{N}_{\mathcal{F}}\right)$, we obtain

$$
\left[c_{1}\left(N_{X \mid Y}\right)-c_{1}\left(T_{\mathcal{F}}\right)\right] \cap[X]=\sum_{R_{j} \subset R} \mu\left(f, \mathcal{F}, S_{j}\right)\left[R_{j}\right]
$$

Now notice that, by construction, the cycle

$$
Z=\sum_{R_{j} \subset R} \mu\left(f, \mathcal{F}, S_{j}\right)\left[R_{j}\right]
$$

is an effective divisor on X, since $\mu\left(f, \mathcal{F}, S_{j}\right) \geq 0$. If the line bundle $\left.\operatorname{det}\left(T_{\mathcal{F}}\right)\right|_{X}-$ $\operatorname{det}\left(N_{X \mid Y}\right)=-\left[\operatorname{det}\left(N_{X \mid Y}\right)-\left.\operatorname{det}\left(T_{\mathcal{F}}\right)\right|_{X}\right]$ is ample, we obtain

$$
0<-\left[\operatorname{det}\left(N_{X \mid Y}\right)-\left.\operatorname{det}\left(T_{\mathcal{F}}\right)\right|_{X}\right] \cdot C=-Z \cdot C
$$

for all irreducible curves $C \subset X$. If X is not invariant by \mathcal{F} and $\left.\operatorname{det}\left(T_{\mathcal{F}}\right)\right|_{X}-$ $\operatorname{det}\left(N_{X \mid Y}\right)$ is ample, we obtain an absurdity. In fact, in this case $Z \cdot C<0$, contradicting the fact that Z is effective.

4. Examples

4.1. Integrable example. This example is inspired by an example due to Izawa (13).

Consider $Y=\mathbb{P}^{3} \times \mathbb{P}^{1} \times \mathbb{P}^{1}$ and the subvariety $X=F^{-1}(0) \cap g^{-1}(0)$ given by the homogenous equations

$$
F(x, y, z)=\sum_{i=0}^{3} x_{i}^{\ell}, \quad G(x, y, z)=\sum_{i=0}^{1} x_{i} y_{i}
$$

where $([x],[y],[z])=\left(\left(x_{0}: x_{1}: x_{2}: x_{3}\right),\left(y_{0}: y_{1}\right),\left(z_{0}: z_{1}\right)\right) \in Y$ are homogeneous coordinates. By a straightforward calculation one may verify that X is smooth. In Y we consider the foliation \mathcal{F} given by the fibers of the map $\pi: \mathbb{P}^{3} \times \mathbb{P}^{1} \times \mathbb{P}^{1} \longrightarrow$ $\mathbb{P}^{1} \times \mathbb{P}^{1}$ and let $f: X \rightarrow Y$ be the inclusion map. We will analyze the branch points of the f with respect to \mathcal{F}.

A simple but exhaustive calculation shows that there is no branch point in the hypersurface $x_{0}=0$; thus we concentrate on the Zariski open set $x_{0} \neq 0$.

The affine charts for $y_{0} \neq 0$. In the affine charts for $x_{0} \neq 0$ and $y_{0} \neq 0$ the equations defining X assume the form

$$
\begin{array}{r}
1+x^{\ell}+y^{\ell}+z^{\ell}=0 \\
1+u x=0
\end{array}
$$

where $(1: x: y: z)=\left(1: \frac{x_{1}}{x_{0}}: \frac{x_{2}}{x_{0}}: \frac{x_{3}}{x_{0}}\right)$ and $(1: v)=\left(1: \frac{y_{1}}{x_{0}}\right)$. This yields the parametrization of X given by

$$
\begin{aligned}
& x=(-1)^{\frac{1}{\ell}}\left(y^{\ell}+z^{\ell}+1\right)^{\frac{1}{\ell}} \\
& v=(-1)^{\frac{1+\ell}{\ell}}\left(y^{\ell}+z^{\ell}+1\right)^{-\frac{1}{\ell}} .
\end{aligned}
$$

Now, recall that the leaves of \mathcal{F} are given by $\{$ const $\} \times \mathbb{C}$; hence the tangency points between X and \mathcal{F} are the solutions to the equation $d u=u_{y} d y+u_{z} d z=0$. Thus the set of tangency points coincides with the solutions of the system of equations

$$
\begin{aligned}
& 0=\frac{\partial v}{\partial y}=(-1)^{-\frac{1}{\ell}} y^{\ell-1}\left(y^{\ell}+z^{\ell}+1\right)^{-\frac{\ell+1}{\ell}}, \\
& 0=\frac{\partial v}{\partial z}=(-1)^{-\frac{1}{\ell}} z^{\ell-1}\left(y^{\ell}+z^{\ell}+1\right)^{-\frac{\ell+1}{\ell}}
\end{aligned}
$$

or, in other words,

$$
\left\{\begin{array}{l}
x=(-1)^{\frac{1}{\ell}} \tag{2}\\
y^{\ell-1}=0 \\
z^{\ell-1}=0 \\
v=-(-1)^{-\frac{1}{\ell}}
\end{array}\right.
$$

The solutions to this system of equations are given in terms of homogeneous coordinates by

$$
S_{k}^{0,0}=\left\{\left(1: \alpha_{k}: 0: 0\right)\right\} \times\left\{\left(1:-1 / \alpha_{k}\right)\right\} \times \mathbb{P}^{1}
$$

where $\alpha_{k}=\exp \left(\frac{(2 k+1) \pi i}{\ell}\right), k=0, \ldots, \ell-1$. Note that $S_{k}^{0,0}$ is a solution with multiplicity $(\ell-1)^{2}$ and that these solutions are contained in the codimension 2 variety given by $x_{2}=x_{3}=0$.

The affine chart for $y_{1} \neq 0$. On the other hand, in the affine charts for $x_{0} \neq 0$ and $y_{1} \neq 0$ the equations defining X assume the form

$$
\begin{array}{r}
1+x^{\ell}+y^{\ell}+z^{\ell}=0 \\
u+x=0
\end{array}
$$

where $(1: x: y: z)=\left(1: \frac{x_{1}}{x_{0}}: \frac{x_{2}}{x_{0}}: \frac{x_{3}}{x_{0}}\right)$ and $(u: 1)=\left(\frac{y_{0}}{y 1}: 1\right)$. This leads to the parametrization of X given by

$$
\begin{aligned}
& x=(-1)^{\frac{1}{\ell}}\left(y^{\ell}+z^{\ell}+1\right)^{\frac{1}{\ell}} \\
& u=(-1)^{\frac{1+\ell}{\ell}}\left(y^{\ell}+z^{\ell}+1\right)^{\frac{1}{\ell}}
\end{aligned}
$$

Since the leaves of \mathcal{F} are given by $\{$ const $\} \times \mathbb{C}$, the tangency points between X and \mathcal{F} are the solutions to the equation $d u=u_{y} d y+u_{z} d z=0$. Therefore the set of
tangency points coincides with the solution to the system of equations

$$
\begin{aligned}
& 0=\frac{\partial u}{\partial y}=(-1)^{\frac{\ell+1}{\ell}} y^{\ell-1}\left(y^{\ell}+z^{\ell}+1\right)^{\frac{1-\ell}{\ell}} \\
& 0=\frac{\partial u}{\partial z}=(-1)^{\frac{\ell+1}{\ell}} z^{\ell-1}\left(y^{\ell}+z^{\ell}+1\right)^{\frac{1-\ell}{\ell}}
\end{aligned}
$$

or, in other words, with the solutions to the system of equations

$$
\left\{\begin{array}{l}
x=(-1)^{\frac{1}{\ell}} \tag{3}\\
y^{\ell-1}=0 \\
z^{\ell-1}=0 \\
u=-(-1)^{\frac{1}{\ell}}
\end{array}\right.
$$

In homogeneous coordinates the solutions to this system of equations are given by

$$
S_{k}^{0,1}=\left\{\left(1: \alpha_{k}: 0: 0\right)\right\} \times\left\{\left(-\alpha_{k}: 1\right)\right\} \times \mathbb{P}^{1}
$$

where $\alpha_{k}=\exp \left(\frac{(2 k+1) \pi i}{\ell}\right), k=0, \ldots, \ell-1$. Note that $S_{k}^{0,1}$ is a solution with multiplicity $(\ell-1)^{2}$ and that this solution is contained in the codimension 2 variety $x_{2}=x_{3}=0$. Notice also that $S_{k}^{0,1}=S_{k}^{0,0}$ for all $k=0, \ldots, \ell-1$.
The residual formula. Consider the projections $\pi_{1}: Y=\mathbb{P}^{3} \times \mathbb{P}^{1} \times \mathbb{P}^{1} \rightarrow \mathbb{P}^{3}$, $\pi_{2}: Y=\mathbb{P}^{3} \times \mathbb{P}^{1} \times \mathbb{P}^{1} \rightarrow \mathbb{P}^{1}, \pi_{3}: Y=\mathbb{P}^{3} \times \mathbb{P}^{1} \times \mathbb{P}^{1} \rightarrow \mathbb{P}^{1}$, and $\rho: Y=$ $\mathbb{P}^{3} \times \mathbb{P}^{1} \times \mathbb{P}^{1} \rightarrow \mathbb{P}^{1} \times \mathbb{P}^{1}$. As usual, we denote a line bundle on Y by $\mathcal{O}(a, b, c):=$ $\pi_{1}^{*} \mathcal{O}_{\mathbb{P}^{3}}(a) \otimes \pi_{2}^{*} \mathcal{O}_{\mathbb{P}^{1}}(b) \otimes \pi_{3}^{*} \mathcal{O}_{\mathbb{P}^{1}}(c)$, with $a, b, c \in \mathbb{Z}$. Now denote $h_{3}=c_{1}(\mathcal{O}(1,0,0))$, $h_{1,1}=c_{1}(\mathcal{O}(0,1,0))$, and $h_{1,2}=c_{1}(\mathcal{O}(0,0,1))$.

Summing up, the set of non-transversal points is given by the following cycle:

$$
S=\sum_{k=0}^{\ell-1}(\ell-1)^{2} S_{k}^{0,0}
$$

Since $\left[S_{k}^{0,0}\right]=h_{3}^{3} \cdot h_{1,1}$, we conclude that

$$
\begin{aligned}
{[S] } & =(\ell-1)^{2} \sum_{k=0}^{\ell-1}\left[S_{k}^{0,0}\right] \\
& =\ell(\ell-1)^{2} h_{3}^{3} \cdot h_{1,1}
\end{aligned}
$$

Recall that $n=3, k=2$, and $r=2$; thus the left side of the formula stated in Theorem 1.1 assumes the form

$$
\begin{aligned}
& f_{*}\left(c_{n-k+1}\left(T_{X}\right) \cap[X]\right)+\sum_{i=1}^{r}(-1)^{i} f_{*}\left(c_{n-k+1-i}\left(T_{X}\right) \cap[X]\right) \cap s_{i}\left(\mathcal{N}_{\mathcal{F}}^{*}\right) \\
& =c_{2}\left(T_{X}\right) \cap[X]-c_{1}\left(T_{X}\right) \cap[X] \cap s_{1}\left(\mathcal{N}_{\mathcal{F}}^{*}\right)+c_{0}\left(T_{X}\right) \cap[X] \cap s_{2}\left(\mathcal{N}_{\mathcal{F}}^{*}\right) \\
& =\left\{c_{2}\left(T_{X}\right)-c_{1}\left(T_{X}\right) \cap s_{1}\left(\mathcal{N}_{\mathcal{F}}^{*}\right)+s_{2}\left(\mathcal{N}_{\mathcal{F}}^{*}\right)\right\} \cap[X] .
\end{aligned}
$$

Since the associated line bundles of $V\left(x_{0}^{\ell}+x_{1}^{\ell}+x_{2}^{\ell}+x_{3}^{\ell}\right)$ and $V\left(x_{0} y_{0}+x_{1} y_{1}\right)$ are $\mathcal{O}(\ell, 0,0)$ and $\mathcal{O}(1,1,0)$, respectively, we have the short exact sequence

$$
\left.\left.0 \longrightarrow T_{X} \longrightarrow T_{Y}\right|_{X} \longrightarrow \mathcal{O}(\ell, 0,0) \oplus \mathcal{O}(1,1,0)\right|_{X} \longrightarrow 0
$$

Now let $h_{3}=c_{1}(\mathcal{O}(1,0,0)), h_{1,1}=c_{1}(\mathcal{O}(0,1,0))$, and $h_{1,2}=c_{1}(\mathcal{O}(0,0,1))$. Then by the Euler sequence for multiprojective spaces [6], we conclude that

$$
c\left(T_{Y}\right)=\left(1+h_{3}\right)^{4}\left(1+h_{1,1}\right)^{2}\left(1+h_{1,2}\right)^{2}
$$

with relations $\left(h_{3}\right)^{4}=\left(h_{1,1}\right)^{2}=\left(h_{1,2}\right)^{2}=0$. Since $c(\mathcal{O}(\ell, 0,0) \oplus \mathcal{O}(1,1,0))=$ $\left(1+\ell h_{3}\right)\left(1+h_{3}+h_{1,1}\right)$ and

$$
\left.c\left(T_{Y}\right)\right|_{X}=c\left(T_{X}\right) \cdot c\left(\left.\mathcal{O}(\ell, 0,0) \oplus \mathcal{O}(1,1,0)\right|_{X}\right)
$$

it follows that

$$
\begin{aligned}
& c_{1}\left(T_{X}\right)=(3-\ell) h_{3}+h_{1,1}+2 h_{1,2} \\
& c_{2}\left(T_{X}\right)=(4-\ell) h_{3} h_{1,1}+(6-2 \ell) h_{3} h_{1,2}+\left(3-3 \ell+\ell^{2}\right) h_{3}^{2}+2 h_{1,1} h_{1,2}
\end{aligned}
$$

We calculate the Segre classes $s_{i}\left(\mathcal{N}_{\widetilde{\mathcal{F}}}^{*}\right)$ for $i=1, \ldots, r$. Since in our example $r=2$, it is enough to calculate $s_{i}\left(\mathcal{N}_{\widetilde{\mathcal{F}}}^{*}\right), i=1,2$. The foliation \mathcal{F} is the restriction of $\rho: Y=\mathbb{P}^{3} \times \mathbb{P}^{1} \times \mathbb{P}^{1} \rightarrow \mathbb{P}^{1} \times \mathbb{P}^{1}$ to X. Then the normal bundle of \mathcal{F} is

$$
N_{\mathcal{F}}=\left.\rho^{*}\left(T_{\mathbb{P}^{1}} \oplus T_{\mathbb{P}^{1}}\right)\right|_{X}=\left.(\mathcal{O}(0,2,0) \oplus \mathcal{O}(0,0,2))\right|_{X}
$$

Thus $N_{\mathcal{F}}^{*}=\left.(\mathcal{O}(0,-2,0) \oplus \mathcal{O}(0,0,-2))\right|_{X}$. Since $\left(h_{1,1}\right)^{2}=\left(h_{1,2}\right)^{2}=0$ we get

$$
s_{1}\left(N_{\mathcal{F}}^{*}\right)=2\left(h_{1,1}+h_{1,2}\right), \quad s_{2}\left(N_{\mathcal{F}}^{*}\right)=4 h_{1,1} h_{1,2} .
$$

Observe that

$$
\begin{aligned}
c_{1}\left(T_{X}\right) \cap s_{1}\left(\mathcal{N}_{\mathcal{F}}^{*}\right) & =\left((3-\ell) h_{3}+h_{1,1}+2 h_{1,2}\right) \cdot\left(2\left(h_{1,1}+h_{1,2}\right)\right) \\
& =(6-2 \ell) h_{3} h_{1,1}+(6-2 \ell) h_{3} h_{1,2}+6 h_{1,1} h_{1,2} .
\end{aligned}
$$

Thus

$$
\begin{aligned}
& c_{2}\left(T_{X}\right)-c_{1}\left(T_{X}\right) \cap s_{1}\left(\mathcal{N}_{\mathcal{F}}^{*}\right)+s_{2}\left(\mathcal{N}_{\mathcal{F}}^{*}\right) \\
& =(4-\ell) h_{3} h_{1,1}+(6-2 \ell) h_{3} h_{1,2}+\left(3-3 \ell+\ell^{2}\right) h_{3}^{2}+2 h_{1,1} h_{1,2} \\
& -\left((6-2 \ell) h_{3} h_{1,1}+(6-2 \ell) h_{3} h_{1,2}+6 h_{1,1} h_{1,2}\right)+4 h_{1,1} h_{1,2} \\
& =(\ell-2) h_{3} h_{1,1}+\left(3-3 \ell+\ell^{2}\right) h_{3}^{2} .
\end{aligned}
$$

Moreover, we have
$[X]=\left[V\left(x_{0}^{\ell}+x_{1}^{\ell}+x_{2}^{\ell}+x_{3}^{\ell}\right)\right] \cap\left[V\left(x_{0} y_{0}+x_{1} y_{1}\right)\right]=\ell h_{3}\left(h_{3}+h_{1,1}\right)=\ell h_{3}^{2}+\ell h_{3} h_{1,1}$.
Thus

$$
\begin{aligned}
& \left\{c_{2}\left(T_{X}\right)-c_{1}\left(T_{X}\right) \cap s_{1}\left(\mathcal{N}_{\mathcal{F}}^{*}\right)+s_{2}\left(\mathcal{N}_{\mathcal{F}}^{*}\right)\right\} \cap[X] \\
& \quad=\left[(\ell-2) h_{3} h_{1,1}+\left(3-3 \ell+\ell^{2}\right) h_{3}^{2}\right] \cdot\left[\ell h_{3}^{2}+\ell h_{3} h_{1,1}\right]
\end{aligned}
$$

Finally, we obtain

$$
\begin{aligned}
\left\{c_{2}\left(T_{X}\right)-c_{1}\left(T_{X}\right) \cap s_{1}\left(\mathcal{N}_{\mathcal{F}}^{*}\right)+s_{2}\left(\mathcal{N}_{\mathcal{F}}^{*}\right)\right\} \cap[X] & \left.=\ell\left(\ell-2+3-3 \ell+\ell^{2}\right)\right] h_{3}^{3} h_{1,1} \\
& =\ell(\ell-1)^{2} h_{3}^{3} h_{1,1}=[S] .
\end{aligned}
$$

4.2. Non-integrable example. Let X be a complex-projective manifold of dimension $\operatorname{dim}(X)=2 n+1$. A contact structure on X is a regular distribution \mathcal{F} induced by a twisted 1 -form

$$
\omega \in H^{0}\left(X, \Omega_{X}^{1} \otimes L\right)
$$

such that $\omega \wedge(d \omega)^{n} \neq 0$ and L is a holomorphic line bundle. Suppose that the second Betti number of X is $b_{2}(X)=1$ and that X is not isomorphic to the projective space $\mathbb{P}^{2 n+1}$. Then it follows from [15] that there exists a compact irreducible component $H \subset \operatorname{RatCurves}^{n}(X)$ of the space of rational curves on X such that the
intersection of L with the curves associated with H is 1 . Moreover, if $C \subset X$ is a generic element of H, then C is smooth, tangent to \mathcal{F}, and

$$
\begin{gathered}
\left.T X\right|_{C}=\mathcal{O}_{C}(2) \oplus \mathcal{O}_{C}(1)^{n-1} \oplus \mathcal{O}_{C}^{n+1} \\
\left.T_{\mathcal{F}}\right|_{C}=\mathcal{O}_{C}(2) \oplus \mathcal{O}_{C}(1)^{n-1} \oplus \mathcal{O}_{C}^{n-1} \oplus \mathcal{O}_{C}(-1)
\end{gathered}
$$

See [16, Facts 2.2 and 2.3]. In particular, we obtain that $N_{C \mid X}=\mathcal{O}_{C}(1)^{n-1} \oplus \mathcal{O}_{C}^{n+1}$, since $T_{C}=\mathcal{O}_{C}(2)$. Then

$$
\left.\operatorname{det}\left(T_{\mathcal{F}}\right)\right|_{C}-\operatorname{det}\left(N_{C \mid X}\right)=\mathcal{O}_{C}(1)
$$

is ample. Examples of such manifolds are given by homogeneous Fano contact manifolds; cf. [1]. This example satisfies the conditions of Corollary [1.3.

Acknowledgment

We would like to thank the referee for the suggestions, comments, and improvements to the exposition.

References

[1] Arnaud Beauville, Fano contact manifolds and nilpotent orbits, Comment. Math. Helv. 73 (1998), no. 4, 566-583, DOI 10.1007/s000140050069. MR1639888
[2] Filippo Bracci and Bruno Scárdua, Holomorphic vector fields transverse to polydiscs, J. Lond. Math. Soc. (2) 75 (2007), no. 1, 99-115, DOI 10.1112/jlms/jdl005. MR 2302732
[3] Jean-Paul Brasselet, Une généralisation de la formule de Riemann-Hurwitz (French), Journées de géométrie analytique (Univ. Poitiers, Poitiers, 1972), Bull. Soc. Math. France Suppl. Mém., No. 38, Soc. Math. France, Paris, 1974, pp. 99-106. MR0361176
[4] Jean-Paul Brasselet, Sur une formule de M. H. Schwartz relative aux revêtements ramifiés (French, with English summary), C. R. Acad. Sci. Paris Sér. A-B. 283 (1976), no. 2, Ai, A41-A44. MR0419818
[5] Marco Brunella, Feuilletages holomorphes sur les surfaces complexes compactes (French, with English and French summaries), Ann. Sci. École Norm. Sup. (4) 30 (1997), no. 5, 569-594, DOI 10.1016/S0012-9593(97)89932-6. MR1474805
[6] Maurício Corrêa Jr. and Márcio G. Soares, A Poincaré type inequality for one-dimensional multiprojective foliations, Bull. Braz. Math. Soc. (N.S.) 42 (2011), no. 3, 485-503, DOI 10.1007/s00574-011-0026-3. MR2833814
[7] El Hadji Cheikh Mbacké Diop, Résidus d'applications holomorphes entre variétés (French, with English summary), Hokkaido Math. J. 29 (2000), no. 1, 171-200, DOI 10.14492/hokmj/1350912963. MR1745509
[8] William Fulton, Intersection theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 2, Springer-Verlag, Berlin, 1984. MR732620
[9] Tomoaki Honda, A localization lemma and its applications, Singularities and complex analytic geometry (Japanese) (Kyoto, 1997), Sūrikaisekikenkyūsho Kōkyūroku 1033 (1998), 110-118. MR1660634
[10] Tomoaki Honda, Tangential index of foliations with curves on surfaces, Hokkaido Math. J. 33 (2004), no. 2, 255-273, DOI 10.14492/hokmj/1285766165. MR2072998
[11] Birger Iversen, Critical points of an algebraic function, Invent. Math. 12 (1971), 210-224, DOI 10.1007/BF01418781. MR0342512
[12] Toshikazu Ito and Bruno Scárdua, On the classification of non-integrable complex distributions, Indag. Math. (N.S.) 17 (2006), no. 3, 397-406, DOI 10.1016/S0019-3577(06)80040-6. MR2321108
[13] Takeshi Izawa, Residues for non-transversality of a holomorphic map to a codimension one holomorphic foliation, J. Math. Soc. Japan 59 (2007), no. 3, 899-910. MR 2344833
[14] Takeshi Izawa and Tatsuo Suwa, Multiplicity of functions of singular varieties, Internat. J. Math. 14 (2003), no. 5, 541-558, DOI 10.1142/S0129167X03001910. MR1993796
[15] Stefan Kebekus, Lines on contact manifolds, J. Reine Angew. Math. 539 (2001), 167-177, DOI 10.1515/crll.2001.072. MR 1863858
[16] Stefan Kebekus, Lines on complex contact manifolds. II, Compos. Math. 141 (2005), no. 1, 227-252, DOI 10.1112/S0010437X04000880. MR2099777
[17] M.-H. Schwartz, Champs de repères tangents à une variété presque complexe (French), Bull. Soc. Math. Belg. 19 (1967), 389-420. MR0243449

Departamento de Matemáticos - CCE, Universidade Federal do Espírito Santo UFES, Av. Fernando Ferrari 514, 29075-910, Vitória - ES, Brasil

Email address: leonardo.camara@ufes.br
Departamento de Matemáticas-ICEX, Universidade Federal de Minas Gerais-UFMG, Av. Antônio Carlos 6627, 31270-901, Belo Horizonte-MG, Brasil

Email address: mauriciojr@ufmg.br

[^0]: Received by the editors October 26, 2017, and, in revised form, March 9, 2018 and March 27, 2018.

 2010 Mathematics Subject Classification. Primary 32S65, 32A27.
 Key words and phrases. Residues, non-transversality, holomorphic foliations and distributions.
 The second named author was partially supported by CAPES, CNPq, and Fapesp-2015/208415 Research Fellowships.

