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RESIDUES FOR MAPS GENERICALLY TRANSVERSE

TO DISTRIBUTIONS

LEONARDO M. CÂMARA AND MAURÍCIO CORRÊA

(Communicated by Filippo Brocci)

Abstract. We show a residues formula for maps generically transversal to
regular holomorphic distributions.

1. Introduction

Let f : X −→ Y be a singular holomorphic map between complex manifolds X
and Y , with dim(X) := n ≥ m =: dim(Y ), having generic fiber F . Consider the
singular set of f defined by

S := Sing(f) = {p ∈ X : rank(df(p)) < m }.
If Y = C is a curve, Iversen in [11] proved the multiplicity formula

χ(X)− χ(F ) · χ(C) = (−1)n
∑

p∈Sing(f)

μp(f),

where μp(f) is the Milnor number of f at p. Izawa and Suwa [14] generalized
Iversen’s result for the case where X is possibly a singular variety.

A generalization of the multiplicity formula for maps was given by Diop in [7]. In
his work he generalized some formulas involving the Chern classes given previously
by Iversen [11], Brasselet [3, 4], and Schwartz [17]. More precisely, Diop showed
that if S is smooth and dim(S) = m− 1, then

χ(X)− χ(F )χ(Y ) = (−1)n−m+1
∑
j

μj

∫
Sj

cq−1[ (f
∗TY )|Sj

− Lj ],

where S =
⋃
Sj is the decomposition of S into irreducible components, μj =

μ(f |Σj) is the Milnor number of the restriction of f to a transversal section Σj

to Sj at a regular point pj ∈ Sj , and Lj is the line bundle over Sj given by the
decomposition f∗df(TX|Sj

)⊕ Lj = f∗(TY )|Sj
.

On the other hand, Brunella in [5] introduced the notion of tangency index of a
germ of curve with respect to a germ of holomorphic foliation: given a reduced curve
C and a foliation F (possibly singular) on a complex compact surface, suppose that
C is not invariant by F and that C and F are given locally by {f = 0} and a vector
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field v, respectively. The tangency index Ip(F , C) of C with respect to F at p is
given by the intersection number

Ip(F , C) = dimC O2/(f, v(f)).

Using this index, Brunella proved the formula

c1(O(C))2 − c1(TF ) ∩ c1(O(C)) =
∑

p∈Tang(F ,C)

Ip(F , C),

where TF is the tangent bundle of F and Tang(F , C) denotes the non-transversality
loci of C with respect to F . In [9] and [10], T. Honda also studied Brunella’s
tangency formula. Distributions and foliations transverse to certain domains in Cn

have been studied by Bracci and Scárdua in [2] and by Ito and Scárdua in [12].
Recently, Izawa [13] generalized certain results due to Diop [7] in the foliated

context. More precisely, let f : X −→ (Y,F) be a holomorphic map such that F
is a regular holomorphic foliation of codimension one in Y . Let S(f,F) be the set
of points where f fails to be transverse to F . Suppose S(f,F) is given by isolated

points and let F̃ := f∗F . Since F is regular, we may find local coordinates in a

neighborhood of p ∈ Sing(f) and f(p) in such a way that f = (f1, . . . , fm) and F̃ is

given by ker(dfm) nearby p. If we pick gi :=
∂fm
∂xi

(i.e., dfm = g1dx1 + · · ·+ gndxn),
then

χ(X)−
r∑

i=1

f∗(cn−i(TX)∩[X])∩c1(NF )
i = (−1)n

∑
p∈S(f,F)

Resp

[
dg1 ∧ · · · ∧ dgm

g1, . . . , gm

]
,

where NF denotes the normal sheaf of F .
In this paper we generalize the above results for a regular distribution F in Y

of any codimension with the following residual formula for the non-transversality
points of f(X) with respect to F .

In order to state our main result, let us introduce some notions. Let f : X −→
(Y,F) be a holomorphic map and suppose that X and Y are projective manifolds.
We say that the set of points in X where f fails to be transversal to F is the
ramification locus of f with respect to F , and denote it by S(f,F). The set
R(f,F) := f(S(f,F)) is called the branch locus or the set of branch points of f
with respect to F . Let S(f,F) =

⋃
Sj be the decomposition of S into irreducible

components. Then we denote by μ(f,F , Sj) the multiplicity of Sj and call it the
ramification multiplicity of f along Sj with respect to F . As usual, we denote
by [W ] the class in the Chow group of X of the subvariety W ⊂ X. The class
f∗[Sj ] =: [Rj ] is called a branch class of f . Observe that R(f,F) is the set of
tangency points between f(X) and F if dim(X) ≤ dim(Y ).

Theorem 1.1. Let f : X −→ (Y,F) be a holomorphic map of generic rank r and let
F be a non-singular distribution of codimension k on Y . Suppose the ramification
locus of f with respect to F has codimension n− k + 1. Then

f∗(cn−k+1(TX) ∩ [X]) +
r∑

i=1

(−1)if∗(cn−k+1−i(TX) ∩ [X]) ∩ si(N ∗
F )

= (−1)n−k+1
∑

Rj⊂R

μ(f,F , Sj)[Rj ],

where si(N ∗
F ) is the i-th Segre class of N ∗

F .
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Some consequences of this result are the following.

Corollary 1.2 (Izawa). If k = 1, then

χ(X)−
r∑

i=1

f∗(cn−i(TX)∩[X])∩c1(NF )
i = (−1)n

∑
p∈S(f,F)

Resp

[
dg1 ∧ · · · ∧ dgm

g1, · · · , gm

]
.

In fact, if k = 1 we have cn(TX) ∩ [X] = χ(X) by the Chern-Gauss-Bonnet
Theorem. Since N ∗

F is a line bundle, then si(N ∗
F ) = (−1)ic1(N ∗

F )
i for all i. The

above Izawa formula [13, Theorem 4.1] implies the multiplicity formula

χ(X)− χ(F ) · χ(C) = (−1)n
∑

p∈Sing(f)

μp(f).

Corollary 1.3 (Tangency formulae). Let X ⊂ Y be a k-dimensional submanifold
generically transverse to a non-singular distribution F on Y of codimension k.
Then

[c1(NX|Y )− c1(TF )] ∩ [X] =
∑

Rj⊂R

μ(f,F , Sj)[Rj ].

In particular, if det(TF)|X − det(NX|Y ) is ample, then X is tangent to F .

If X = C is a curve on a surface Y , we have [C] = c1(O(C)) = c1(NX|Y ). This
yields Brunella’s formula

c1(O(C))2 − c1(TF ) ∩ c1(O(C)) =
∑

p∈Tang(F ,C)

Ip(F , C).

Moreover, this formula coincides with Honda’s formula [10] in case F is a one-
dimensional foliation and X is a curve.

In Section 3, we prove Theorem 1.1 and Corollary 1.3.

2. Holomorphic distributions

Let X be a complex manifold of dimension n.

Definition 2.1. A codimension k distribution F onX is given by an exact sequence

(1) F : 0 −→ N ∗
F −→ Ω1

X −→ ΩF −→ 0,

where N ∗
F is a coherent sheaf of rank k ≤ dim(X)−1 and ΩF is a torsion free sheaf.

We say that F is a foliation if at the level of local sections we have d(N ∗
F ) ⊂ N ∗

F∧Ω1
X .

The singular set of the distribution F is defined by Sing(F) := Sing(ΩF ). We say
that F is regular if Sing(F) = ∅.

Taking determinants of the map N ∗
F −→ Ω1

X , we obtain a map

det(N ∗
F ) −→ Ωk

X ,

which induces a twisted holomorphic k-form ω ∈ H0(X,Ωk
X⊗det(N ∗

F )
∗). Therefore,

a distribution can be induced by a twisted holomorphic k-form

H0(X,Ωk
X ⊗ det(N ∗

F )
∗),

which is locally decomposable outside the singular set of F . That is, for each
point p ∈ X \ Sing(F) there exists a neighborhood U and holomorphic 1-forms
ω1, . . . , ωk ∈ H0(U,Ω1

U ) such that

ω|U = ω1 ∧ · · · ∧ ωk.
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Moreover, if F is a foliation, then by Definition 2.1 we have

dωi ∧ ω1 ∧ · · · ∧ ωk = 0

for all i = 1, . . . , k. The tangent sheaf of F is the coherent sheaf of rank (n − k)
given by

TF = {v ∈ TX ; ivω = 0}.
The normal sheaf of F is defined by NF = TX/TF . It is worth noting that NF �=
(N ∗

F )
∗ whenever Sing(F) �= ∅. Dualizing the sequence (1) one obtains the exact

sequence

0 −→ TF −→ TX −→ (N ∗
F )

∗ −→ Ext1(ΩF ,OX) −→ 0,

so that there is an exact sequence

0 −→ NF −→ (N ∗
F )

∗ −→ Ext1(ΩF ,OX) −→ 0.

Definition 2.2. Let V ⊂ X be an analytic subset. We say that V is tangent to F
if TpV ⊂ (TF)p, for all p ∈ V \ Sing(V ).

3. Proof of the main results

We begin by proving the main theorem.

Proof of Theorem 1.1. Consider a map f : X −→ Y and let (U, x) and (V, y) be
local systems of coordinates for X and Y such that f(U) ⊂ V . Since F is a regular
distribution, we may suppose that it is induced on U by the k-form ω1 ∧ · · · ∧ ωk.
Therefore, the ramification locus of f with respect to F on U is given by

S(f,F)|U = {f∗(ω1 ∧ · · · ∧ ωk) = f∗(ω1) ∧ · · · ∧ f∗(ωk) = 0}.

In other words, the ramification locus S(f,F) coincides with Sing(f∗(F)).

Let us denote F̃ := f∗(F). Let {Uα} be a covering of Y such that the dis-
tribution F is induced on Uα by the holomorphic 1-forms ωα

1 , . . . , ω
α
k . Hence, on

Uα ∩Uβ �= ∅ we have (ωα
1 ∧ · · · ∧ωα

k ) = gαβ(ω
β
1 ∧ · · · ∧ωβ

k ), where {gαβ} is a cocycle

generating the line bundle det(N ∗
F )

∗. Then the distribution F̃ is induced locally by
f∗(ωα

1 ), . . . , f
∗(ωα

k ). This shows that N ∗
˜F is locally free. Therefore the singular set

of F̃ is the loci of degeneracy of the induced map

N ∗
˜F −→ Ω1

X .

By hypothesis, the ramification locus of f with respect to F , which is given by

Sing(F̃), has codimension n − k + 1. Then it follows from the Thom-Porteous
formula [8] that

cn−k+1(Ω
1
X −N ∗

˜F ) ∩ [X] =
∑
j

μj [Sj ],

where μj is the multiplicity of the irreducible component Si. It follows from
c(Ω1

X −N ∗
˜F ) = c(Ω1

X) · s(N ∗
˜F ) that

cn−k+1(Ω
1
X −N ∗

˜F ) =
n−k+1∑
i=0

cn−k+1−i(Ω
1
X) ∩ si(N ∗

˜F ),
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where si(N ∗
˜F ) is the i-th Segre classe of N ∗

˜F . Since X0 := X − Sing(F̃) is a dense

and open subset of X, by taking the cap product we have

cn−k+1(Ω
1
X −N ∗

˜F ) ∩ [X] = cn−k+1(Ω
1
X −N ∗

˜F ) ∩ [X0]

=
n−k+1∑
i=0

(cn−k+1−i(Ω
1
X)) ∩ [X0] ∩ si(f

∗N ∗
F ).

It follows from the projection formula that

f∗(cn−k+1(Ω
1
X−N ∗

˜F ))∩[X])=

n−k+1∑
i=0

f∗(cn−k+1−i(Ω
1
X)∩[X])∩si(N ∗

F ) =
∑
j

μjf∗[Sj ].

�
Now, we prove our tangency formulae as a consequence of the main theorem.

Proof of Corollary 1.3. Let i : X ↪→ Y be the inclusion map. It follows from
Theorem 1.1 that

i∗(c1(TX) ∩ [X])− i∗([X]) ∩ s1(N ∗
F ) = −

∑
Rj⊂R

μ(f,F , Sj)[Rj ].

On the one hand, we have c1(TY |X) = c1(NX|Y ) + c1(TX), and on the other hand,
we have c1(TY |X) = c1(TF |X) + c1(NF |X). Since s1(N ∗

F ) = −c1(N ∗
F ) = c1(NF),

we obtain
[c1(NX|Y )− c1(TF )] ∩ [X] =

∑
Rj⊂R

μ(f,F , Sj)[Rj ].

Now notice that, by construction, the cycle

Z =
∑

Rj⊂R

μ(f,F , Sj)[Rj ]

is an effective divisor on X, since μ(f,F , Sj) ≥ 0. If the line bundle det(TF )|X −
det(NX|Y ) = −[det(NX|Y )− det(TF )|X ] is ample, we obtain

0 < −[det(NX|Y )− det(TF )|X ] · C = −Z · C,
for all irreducible curves C ⊂ X. If X is not invariant by F and det(TF )|X −
det(NX|Y ) is ample, we obtain an absurdity. In fact, in this case Z · C < 0,
contradicting the fact that Z is effective. �

4. Examples

4.1. Integrable example. This example is inspired by an example due to Izawa
[13].

Consider Y = P3 × P1 × P1 and the subvariety X = F−1(0) ∩ g−1(0) given by
the homogenous equations

F (x, y, z) =

3∑
i=0

x�
i , G(x, y, z) =

1∑
i=0

xiyi,

where ([x], [y], [z]) = ((x0 : x1 : x2 : x3), (y0 : y1), (z0 : z1)) ∈ Y are homogeneous
coordinates. By a straightforward calculation one may verify that X is smooth. In
Y we consider the foliation F given by the fibers of the map π : P3 × P

1 × P
1 −→

P1×P1 and let f : X → Y be the inclusion map. We will analyze the branch points
of the f with respect to F .
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A simple but exhaustive calculation shows that there is no branch point in the
hypersurface x0 = 0; thus we concentrate on the Zariski open set x0 �= 0.

The affine charts for y0 �= 0. In the affine charts for x0 �= 0 and y0 �= 0 the
equations defining X assume the form

1 + x� + y� + z� = 0,

1 + ux = 0,

where (1 : x : y : z) = (1 : x1

x0
: x2

x0
: x3

x0
) and (1 : v) = (1 : y1

x0
). This yields the

parametrization of X given by

x = (−1)
1
� (y� + z� + 1)

1
� ,

v = (−1)
1+�
� (y� + z� + 1)−

1
� .

Now, recall that the leaves of F are given by {const}×C; hence the tangency points
between X and F are the solutions to the equation du = uydy + uzdz = 0. Thus
the set of tangency points coincides with the solutions of the system of equations

0 =
∂v

∂y
= (−1)−

1
� y�−1(y� + z� + 1)−

�+1
� ,

0 =
∂v

∂z
= (−1)−

1
� z�−1(y� + z� + 1)−

�+1
�

or, in other words,

(2)

⎧⎪⎪⎨
⎪⎪⎩

x = (−1)
1
� ,

y�−1 = 0,
z�−1 = 0,

v = −(−1)−
1
� .

The solutions to this system of equations are given in terms of homogeneous coor-
dinates by

S0,0
k = {(1 : αk : 0 : 0)} × {(1 : −1/αk)} × P

1,

where αk = exp( (2k+1)πi
� ), k = 0, . . . , � − 1. Note that S0,0

k is a solution with

multiplicity (� − 1)2 and that these solutions are contained in the codimension 2
variety given by x2 = x3 = 0.

The affine chart for y1 �= 0. On the other hand, in the affine charts for x0 �= 0
and y1 �= 0 the equations defining X assume the form

1 + x� + y� + z� = 0,

u+ x = 0,

where (1 : x : y : z) = (1 : x1

x0
: x2

x0
: x3

x0
) and (u : 1) = ( y0

y1 : 1). This leads to the

parametrization of X given by

x = (−1)
1
� (y� + z� + 1)

1
� ,

u = (−1)
1+�
� (y� + z� + 1)

1
� .

Since the leaves of F are given by {const}×C, the tangency points between X and
F are the solutions to the equation du = uydy + uzdz = 0. Therefore the set of
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tangency points coincides with the solution to the system of equations

0 =
∂u

∂y
= (−1)

�+1
� y�−1(y� + z� + 1)

1−�
� ,

0 =
∂u

∂z
= (−1)

�+1
� z�−1(y� + z� + 1)

1−�
�

or, in other words, with the solutions to the system of equations

(3)

⎧⎪⎪⎨
⎪⎪⎩

x = (−1)
1
� ,

y�−1 = 0,
z�−1 = 0,

u = −(−1)
1
� .

In homogeneous coordinates the solutions to this system of equations are given by

S0,1
k = {(1 : αk : 0 : 0)} × {(−αk : 1)} × P

1,

where αk = exp( (2k+1)πi
� ), k = 0, . . . , � − 1. Note that S0,1

k is a solution with

multiplicity (�−1)2 and that this solution is contained in the codimension 2 variety

x2 = x3 = 0. Notice also that S0,1
k = S0,0

k for all k = 0, . . . , �− 1.

The residual formula. Consider the projections π1 : Y = P3 × P1 × P1 → P3,
π2 : Y = P

3 × P
1 × P

1 → P
1, π3 : Y = P

3 × P
1 × P

1 → P
1, and ρ : Y =

P3 × P1 × P1 → P1 × P1. As usual, we denote a line bundle on Y by O(a, b, c) :=
π∗
1OP3(a)⊗ π∗

2OP1(b)⊗ π∗
3OP1(c), with a, b, c ∈ Z. Now denote h3 = c1(O(1, 0, 0)),

h1,1 = c1(O(0, 1, 0)), and h1,2 = c1(O(0, 0, 1)).
Summing up, the set of non-transversal points is given by the following cycle:

S =

�−1∑
k=0

(�− 1)2S0,0
k .

Since [S0,0
k ] = h3

3 · h1,1, we conclude that

[S] = (�− 1)2
�−1∑
k=0

[S0,0
k ]

= �(�− 1)2h3
3 · h1,1.

Recall that n = 3, k = 2, and r = 2; thus the left side of the formula stated in
Theorem 1.1 assumes the form

f∗(cn−k+1(TX) ∩ [X]) +
r∑

i=1

(−1)if∗(cn−k+1−i(TX) ∩ [X]) ∩ si(N ∗
F )

= c2(TX) ∩ [X]− c1(TX) ∩ [X] ∩ s1(N ∗
F ) + c0(TX) ∩ [X] ∩ s2(N ∗

F )

= {c2(TX)− c1(TX) ∩ s1(N ∗
F ) + s2(N ∗

F )} ∩ [X].

Since the associated line bundles of V (x�
0 + x�

1 + x�
2 + x�

3) and V (x0y0 + x1y1)
are O(�, 0, 0) and O(1, 1, 0), respectively, we have the short exact sequence

0 −→ TX −→ TY |X −→ O(�, 0, 0)⊕O(1, 1, 0)|X −→ 0.

Now let h3 = c1(O(1, 0, 0)), h1,1 = c1(O(0, 1, 0)), and h1,2 = c1(O(0, 0, 1)). Then
by the Euler sequence for multiprojective spaces [6], we conclude that

c(TY ) = (1 + h3)
4(1 + h1,1)

2(1 + h1,2)
2,
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with relations (h3)
4 = (h1,1)

2 = (h1,2)
2 = 0. Since c(O(�, 0, 0) ⊕ O(1, 1, 0)) =

(1 + �h3)(1 + h3 + h1,1) and

c(TY )|X = c(TX) · c(O(�, 0, 0)⊕O(1, 1, 0)|X)

it follows that

c1(TX) = (3− �)h3 + h1,1 + 2h1,2,

c2(TX) = (4− �)h3h1,1 + (6− 2�)h3h1,2 + (3− 3�+ �2)h2
3 + 2h1,1h1,2.

We calculate the Segre classes si(N ∗
˜F ) for i = 1, . . . , r. Since in our example

r = 2, it is enough to calculate si(N ∗
˜F ), i = 1, 2. The foliation F is the restriction

of ρ : Y = P3 × P1 × P1 → P1 × P1 to X. Then the normal bundle of F is

NF = ρ∗(TP1 ⊕ TP1)|X = (O(0, 2, 0)⊕O(0, 0, 2))|X .

Thus N∗
F = (O(0,−2, 0)⊕O(0, 0,−2))|X . Since (h1,1)

2 = (h1,2)
2 = 0 we get

s1(N
∗
F ) = 2(h1,1 + h1,2), s2(N

∗
F ) = 4h1,1h1,2.

Observe that

c1(TX) ∩ s1(N ∗
F ) = ((3− �)h3 + h1,1 + 2h1,2) · (2(h1,1 + h1,2))

= (6− 2�)h3h1,1 + (6− 2�)h3h1,2 + 6h1,1h1,2.

Thus

c2(TX)− c1(TX) ∩ s1(N ∗
F ) + s2(N ∗

F )

= (4− �)h3h1,1 + (6− 2�)h3h1,2 + (3− 3�+ �2)h2
3 + 2h1,1h1,2

− ((6− 2�)h3h1,1 + (6− 2�)h3h1,2 + 6h1,1h1,2) + 4h1,1h1,2

= (�− 2)h3h1,1 + (3− 3�+ �2)h2
3.

Moreover, we have

[X] = [V (x�
0 + x�

1 + x�
2 + x�

3)] ∩ [V (x0y0 + x1y1)] = �h3(h3 + h1,1) = �h2
3 + �h3h1,1.

Thus

{c2(TX)− c1(TX) ∩ s1(N ∗
F ) + s2(N ∗

F )} ∩ [X]

= [(�− 2)h3h1,1 + (3− 3�+ �2)h2
3] · [�h2

3 + �h3h1,1].

Finally, we obtain

{c2(TX)− c1(TX) ∩ s1(N ∗
F ) + s2(N ∗

F )} ∩ [X] = �(�− 2 + 3− 3�+ �2)]h3
3h1,1

= �(�− 1)2h3
3h1,1 = [S].

4.2. Non-integrable example. Let X be a complex-projective manifold of di-
mension dim(X) = 2n + 1. A contact structure on X is a regular distribution F
induced by a twisted 1-form

ω ∈ H0(X,Ω1
X ⊗ L),

such that ω∧(dω)n �= 0 and L is a holomorphic line bundle. Suppose that the second
Betti number of X is b2(X) = 1 and that X is not isomorphic to the projective
space P2n+1. Then it follows from [15] that there exists a compact irreducible
component H ⊂ RatCurvesn(X) of the space of rational curves on X such that the
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intersection of L with the curves associated with H is 1. Moreover, if C ⊂ X is a
generic element of H, then C is smooth, tangent to F , and

TX|C = OC(2)⊕OC(1)
n−1 ⊕On+1

C ,

TF |C = OC(2)⊕OC(1)
n−1 ⊕On−1

C ⊕OC(−1).

See [16, Facts 2.2 and 2.3]. In particular, we obtain that NC|X = OC(1)
n−1⊕On+1

C ,
since TC = OC(2). Then

det(TF )|C − det(NC|X) = OC(1)

is ample. Examples of such manifolds are given by homogeneous Fano contact
manifolds; cf. [1]. This example satisfies the conditions of Corollary 1.3.
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