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KOMLÓS’ THEOREM AND THE FIXED POINT PROPERTY

FOR AFFINE MAPPINGS

TOMÁS DOMÍNGUEZ BENAVIDES AND MARIA A. JAPÓN

(Communicated by Thomas Schlumprecht)

Abstract. Assume that X is a Banach space of measurable functions for
which Komlós’ Theorem holds. We associate to any closed convex bounded
subset C of X a coefficient t(C) which attains its minimum value when C
is closed for the topology of convergence in measure and we prove some fixed
point results for affine Lipschitzian mappings, depending on the value of t(C) ∈
[1, 2] and the value of the Lipschitz constants of the iterates. As a first con-

sequence, for every L < 2, we deduce the existence of fixed points for affine
uniformly L-Lipschitzian mappings defined on the closed unit ball of L1[0, 1].
Our main theorem also provides a wide collection of convex closed bounded
sets in L1([0, 1]) and in some other spaces of functions which satisfy the fixed
point property for affine nonexpansive mappings. Furthermore, this property
is still preserved by equivalent renormings when the Banach-Mazur distance is
small enough. In particular, we prove that the failure of the fixed point prop-
erty for affine nonexpansive mappings in L1(μ) can only occur in the extremal
case t(C) = 2. Examples are given proving that our fixed point theorem is
optimal in terms of the Lipschitz constants and the coefficient t(C).

1. Introduction

Fixed point theory for nonexpansive mappings and Lipschitzian mappings has
been widely developed in the last 40 years. In many Banach spaces, it is well known
that any nonexpansive mapping T defined from a convex closed bounded subset C
into C has a fixed point. However, in some other spaces this assertion is false.
It can be surprising that, as observed in [12, Chapter 2], most relevant examples
about the failure of the fixed point property for nonexpansive mappings in closed
convex bounded sets involve affine mappings (see also [7,9]). Of course, this failure
cannot occur when C is weakly compact due to the Tychonov Fixed Point Theorem
(and this fact may well be the reason for the absence of examples of nonexpansive
fixed point free mappings defined on a closed convex bounded subset of a reflexive
space). However, we will show that, in the case of L1-like spaces and due to Komlós’
Theorem, the failure of the fixed point property for affine nonexpansive mappings
can only occur in a very restricted class of sets.

In Section 1 we introduce some preliminary definitions and notation. In Section
2 we state and prove our main theorem. To do that, we associate to any closed
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convex bounded subset C of the space X a coefficient t(C) ∈ [1, 2], which is equal
to 1 when C is closed for the topology of convergence in measure and can be seen
as a measure of the “nonclosedness” of the set C for this topology. We prove some
fixed point results for a class of affine mappings which contains all uniformly L-
Lipschitzian mappings, depending on the value of t(C), the value of L, and the
Opial modulus of the space with respect to the convergence in measure topology.
Since a fixed point theorem for L-Lipschitzian mappings with L ≥ 1 immediately
yields the existence of fixed points for nonexpansive mappings, our result can be
applied to this class of mappings, and we obtain stability results for the fixed point
property for affine nonexpansive mappings under renormings. We show that a wide
collection of closed convex sets in L1([0, 1]) satisfy the fixed point property for
affine uniformly L-Lipschitzian mappings (including its closed unit ball if L < 2),
and we show some applications of our main theorem in other spaces, such as Orlicz
spaces and noncommutative L1-spaces. In particular, we prove that the failure of
the fixed point property for affine nonexpansive mappings in L1(μ) can only occur
in the extremal case t(C) = 2.

Since every nonreflexive space contains a closed convex bounded set which fails
the fixed point property for affine continuous mappings [14], we cannot expect
the validity of our results without any Lipschitz restriction. In fact, in Section 3,
we include some examples showing that the value of the constant L in our main
theorem is optimal for all possible values of t(C).

It is worth noting that while standard fixed point results for nonexpansive map-
pings in L1(μ) assume compactness for the set C with respect to the topology
of convergence in measure, due to our affinity assumption, we do not need any
compactness assumption for C.

2. Preliminaries

Given a Banach space (X, ‖ · ‖) endowed with a linear topology τ , it is said that
X has the nonstrict Opial condition with respect to τ if for every sequence (xn)
which is τ -convergent to some x0 ∈ X,

lim inf
n

‖xn − x0‖ ≤ lim inf
n

‖xn − x‖

for every x ∈ X. In the case that the above inequality is strict for every x �= x0, it is
said that X verifies the Opial condition w.r.t. τ . Associated to the Opial property
the following coefficient is defined for every c ≥ 0:

rτ (c) = inf{lim inf
n

‖xn − x‖ − 1},

where the infimum is taken over all x ∈ X with ‖x‖ ≥ c and all τ -null sequences
(xn) ⊂ X with lim infn ‖xn‖ ≥ 1 (see for instance [12, Chapter 4]). The modulus
rτ (·) is a nondecreasing and continuous function on [0,+∞) [2, Theorem 3.5, p. 103].
It is clear that rτ (c) ≥ 0 for every c ≥ 0 whenever X verifies the nonstrict Opial
condition w.r.t. τ . In the case that rτ (c) > 0 for every c ≥ 0, the Banach space is
said to satisfy the uniform Opial condition w.r.t. τ .

We recall Komlós’ Theorem:

Theorem 2.1 ([13]). Let μ be a probability measure. For every bounded sequence
(fn) in L1(μ), there exists a subsequence (gn) of (fn) and a function g ∈ L1(μ)
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such that for every further subsequence (hn) of (gn),

1

n

n∑
i=1

hi → g μ-a.e.

Komlós’ Theorem has been extended to a broader class of Banach function
spaces.

Definition 2.2. We say that a Banach function space X associated to a σ-finite
measure satisfies Komlós’ condition if for every bounded sequence (fn) ⊂ X there
exists a subsequence (gn) of (fn) and a function g ∈ X such that for every further
subsequence (hn) of (gn),

1

n

n∑
i=1

hi → g μ-a.e.

It is proved in [3] that every Banach function space X over a σ-finite complete
measure space (Ω,Σ, μ), such that X is weakly finitely integrable and has the Fatou
property (see definitions in [3]), satisfies Komlós’ condition. Among this class, Lp(μ)
(1 ≤ p ≤ +∞), Lorentz, Orlicz, and Orlicz–Lorentz spaces are included.

3. Main result

We start this section by introducing the following geometric coefficient which
will be essential in the proof of our main theorem.

Definition 3.1. Let X be a Banach space endowed with a topology τ . Let C
be a norm-closed convex bounded subset of X which contains some τ -convergent
sequences that are not norm convergent. We define

t(C) = inf

{
λ ≥ 0 : inf

c∈C
lim sup

n
‖c− xn‖ ≤ λ lim sup

n
‖x− xn‖

}
,

where (xn) and x run over all sequences (xn) ⊂ C with τ − limxn = x ∈ X.

Note that t(C) ≤ 2 for any case. Indeed, for any ε > 0 choose xm such that
‖x− xm‖ ≤ (1 + ε) lim supn ‖xn − x‖. We have

lim sup
n

‖xm − xn‖ ≤ lim sup
n

‖x− xn‖+ ‖x− xm‖ ≤ (2 + ε) lim sup
n

‖x− xn‖.

Furthermore, t(C) ≥ 1 whenever X verifies the nonstrict Opial condition since
lim supn ‖x − xn‖ ≤ lim supn ‖c − xn‖ for every c ∈ C. If C is, in addition, τ -
sequentially closed, it is clear that t(C) = 1. If X is a Banach space satisfying the
uniform Opial condition w.r.t. τ and t(C) = 1, the set C must be τ -sequentially
closed. Indeed, assume that {xn} is a τ -convergent sequence to x /∈ C. Denote
d = d(x,C) and b = lim supn ‖xn−x‖. For every c ∈ C we have ‖x− c‖ ≥ d, which
means that lim supn ‖c− xn‖ ≥ b(1 + r(d/b)) and t(C) ≥ 1 + r(d/b) > 1.

Since t(C) attains its minimum value when C is τ -sequentially closed, the co-
efficient t(C) can be understood as a measure of the “nonclosedness” of C for the

topology τ . If we denote by H(C,C
τ
) the Hausdorff distance between a set C and

its τ -closure, the previous idea can be illustrated with the following lemma:

Lemma 3.2. Let C be a norm-closed convex bounded subset of L1([0, 1]) and let τ

be the topology of the convergence in measure. Then H(C,C
τ
) ≤ diam(C)/2. The

extremal case, H(C,C
τ
) = diam(C)/2, implies that t(C) = 2.
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Proof. It is well known that for every z ∈ L1([0, 1]) and every sequence τ -null
sequence (xn) we have

(∗) lim sup
n

‖xn + z‖ = lim sup
n

‖xn‖+ ‖z‖.

If (xn) ⊂ C with τ − limn xn = x, the above equality implies that

diam(C) ≥ lim sup
m

lim sup
n

‖(xn − x) + (x− xm)‖

= lim sup
n

‖xn − x‖+ lim sup
m

‖x− xm‖ = 2 lim sup
n

‖xn − x‖,

and consequently lim supn ‖xn − x‖ ≤ diam(C)/2. The definition of the Hausdorff

distance now implies that H(C,C
τ
) ≤ diam(C)/2.

Assume H(C,C
τ
) = diam(C)/2. For every ε > 0 there exists x ∈ C

τ
such that

d(x,C) ≥ diam(C)/2 − ε. Since the topology τ is metrizable, we can choose a
sequence (xn) in C which is τ -convergent to x. For every c ∈ C we have

lim sup
n

‖xn − c‖ = lim sup
n

‖xn − x‖+ ‖x− c‖

≥ lim sup
n

‖xn − x‖+ diam(C)/2− ε

≥ 2 lim sup ‖xn − x‖ − ε,

which implies that t(C) = 2. �

Throughout this section, we consider that X is a Banach function space over
a finite or σ-finite measure space with Komlós’ condition. In the case that the
measure is finite we can endow X with the topology of the convergence in measure.
Convergence in measure for a finite measure is related to a.e. convergence as follows:
For (fn) a sequence converging to f in measure, there is a subsequence (fnk

) which
converges to f almost everywhere. Conversely, if (fn) tends to f a.e., then (fn)
converges to f in measure [10, pp. 156–158]. The same holds for a σ-finite measure
and the local convergence in measure. Due to Komlós’ condition, every norm-closed
convex bounded subset of X contains a sequence which is convergent in measure
or locally in measure. In fact, due to these facts, we can equivalently define the
coefficient t(C) by

t(C) = inf{λ ≥ 0 : inf
c∈C

lim sup
n

‖c− xn‖ ≤ λ lim sup
n

‖x− xn‖ : xn → x μ-a.e.},

and for the Opial modulus rτ (·) we can replace the τ -convergence by convergence
μ-a.e.

If T : C → C is a Lipschitzian mapping, we denote by |T | its exact Lipschitz
constant, that is,

|T | = sup

{
‖Tx− Ty‖
‖x− y‖ : x, y ∈ C, x �= y

}
,

and we define

S(T ) = lim inf
n

|T |+ · · ·+ |Tn|
n

.

A sequence (xn) ⊂ C is an approximate fixed point sequence (a.f.p.s.) for T when-
ever limn ‖xn − Txn‖ = 0 and it is clear that this property is inherited by all its
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subsequences. The main result of the article is the following:

Theorem 3.3. Let X be a Banach function space with Komlós’ condition and
satisfying the nonstrict Opial property with respect to τ , the convergence locally in
measure topology. Let C be a norm-closed convex bounded set and let T : C → C
be an affine Lipschitzian mapping. If

S(T ) <
1 + rτ (1)

t(C)
,

then T has a fixed point.

Proof. Since T is affine, it can be checked that for every z ∈ C the sequence

xn :=
Tz + T 2z + · · ·+ Tnz

n

is an a.f.p.s. and the sequence of the arithmetic means of an a.f.p.s. is an a.f.p.s. as
well. Applying Komlós’ condition, there exists a subsequence of (xn) and x ∈ X,
such that for all further subsequences, the sequence of successive arithmetic means
converges to x μ-a.e. Consequently, we can always assume that the set

D(C) = {{(xn), x} : (xn) is an a.f.p.s. in C and lim
n

xn = x μ-a.e.}

is nonempty.
For every y ∈ C we define

r(y) = inf{lim sup
n

‖y − xn‖ : {(xn), x} ∈ D(C)}.

Note that r : C → [0,+∞) is well defined and norm-continuous. We first prove
that T (y) = y whenever r(y) = 0. Indeed, let ε ∈ (0, 1) and take {(xn), x} ∈ D(C)
with lim supn ‖y − xn‖ ≤ ε. Then

‖Ty − y‖ ≤ lim sup
n

‖Ty − Txn‖+ lim sup
n

‖Txn − xn‖+ lim sup
n

‖xn − y‖

≤ |T | lim sup
n

‖y − xn‖+ lim sup
n

‖xn − y‖ ≤ (|T |+ 1)ε

and T (y) = y since ε is arbitrary. Thus, our target will be to find some y ∈ C with
r(y) = 0.

To do that, choose ε > 0 such that

S(T ) <
1 + rτ (1)

t(C)

1− ε

(1 + ε)2

and an arbitrary x0 ∈ C. We may assume that r(x0) > 0. Take {(xn), x} ∈ D(C)
with

lim sup
n

‖x0 − xn‖ < r(x0)(1 + ε).

We denote by φ(xn)(·) the convex function

φ(xn)(y) = lim sup
n

‖y − xn‖, y ∈ X.

It can be easily checked that limn ‖T sxn − xn‖ = 0 for every s ∈ N. Hence

φ(xn)(T
sx0) = lim sup

n
‖T sx0 − xn‖ = lim sup

n
‖T sx0 − T sxn‖

≤ |T s| lim sup
n

‖x0 − xn‖ = |T s|φ(xn)(x0).
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Therefore, if we define the sequence

zs :=
Tx0 + · · ·+ T sx0

s

we know that (zs) is an a.f.p.s. and for every s ∈ N,

φ(xn)(zs) ≤
|T |+ |T 2|+ · · ·+ |T s|

s
φ(xn)(x0).

Taking limits

lim inf
s

φ(xn)(zs) ≤ S(T ) φ(xn)(x0).

Applying Komlós’ condition, we can find a subsequence (zsi) and z ∈ X, such
that limi φ(xn)(zsi) = lim infs φ(xn)(zs) and

z̄p =
zs1 + · · ·+ zsp

p

converges to z μ-a.e. Moreover, by convexity and taking limits we have

lim sup
p

φ(xn)(z̄p) ≤ lim sup
p

φ(xn)(zs1) + · · ·+ φ(xn)(zsp)

p
= lim

i
φ(xn)(zsi) ≤ S(T ) φ(xn)(x0).

Consequently, we have obtained an a.f.p.s. (z̄p), convergent to some z ∈ X μ-a.e.
and with

lim sup
p

lim sup
n

‖z̄p − xn‖ < S(T ) r(x0)(1 + ε).

Define

ρ :=
r(x0)(1− ε)

t(C)(1 + ε)
.

We claim that

min{lim sup
n

‖x− xn‖, lim sup
p

‖z − z̄p‖} ≤ ρ.

Indeed, otherwise, using the Opial modulus

lim sup
p

∥∥∥∥ z̄p − x

ρ

∥∥∥∥ = lim sup
p

∥∥∥∥ z̄p − z + z − x

ρ

∥∥∥∥ ≥ 1 + rτ

(
‖z − x‖

ρ

)
≥ 1,

and since rτ (·) is nondecreasing and continuous

S(T ) r(x0)(1 + ε) > lim sup
p

lim sup
n

‖z̄p − xn‖

= ρ lim sup
p

lim sup
n

∥∥∥∥ z̄p − x

ρ
+

x− xn

ρ

∥∥∥∥
≥ ρ lim sup

p

[
1 + rτ

(
‖z̄p − x‖

ρ

)]

≥ ρ

[
1 + rτ

(
lim supp ‖z̄p − x‖

ρ

)]
≥ ρ[1 + rτ (1)],

which is a contradiction to the choice of ε and the definition of ρ.
According to the definition of the coefficient t(C), there exist some x̄, z̄ ∈ C such

that

lim sup
n

‖x̄− xn‖ ≤ t(C)(1 + ε) lim sup
n

‖x− xn‖,

lim sup
n

‖z̄ − z̄n‖ ≤ t(C)(1 + ε) lim sup
n

‖z − z̄n‖.
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If lim supn ‖xn − x‖ ≤ ρ, then

lim sup
n

‖xn − x̄‖ ≤ r(x0)(1− ε),

which implies that r(x̄) ≤ r(x0)(1− ε). Note that

‖x̄− x0‖ ≤ lim sup
n

‖xn − x0‖+ lim sup
n

‖xn − x̄‖ ≤ r(x0)(1 + ε) + r(x0)(1− ε)

= 2r(x0).

On the other hand, if lim supp ‖z̄p − z‖ ≤ ρ, then

lim sup
p

‖z̄p − z̄‖ ≤ r(x0)(1− ε),

which implies that r(z̄) ≤ r(x0)(1− ε). In this case,

‖z̄ − x0‖ ≤ lim sup
n

‖x0 − xn‖+ lim sup
p

‖z̄ − z̄p‖

+ lim sup
p

lim sup
n

‖z̄p − xn‖

≤ (1 + ε)r(x0) + r(x0)(1− ε) + (1 + ε)S(T )r(x0)

= [2 + (1 + ε)S(T )]r(x0).

In every case, we have obtained some w(x0) ∈ C with

r(w(x0)) ≤ r(x0)(1− ε) and ‖x0 − w(x0)‖ ≤ [2 + (1 + ε)S(T )]r(x0).

Now we construct the sequence a1 = x0, an+1 = w(an) for n ≥ 1. Since (an) is a
Cauchy sequence, there exists a = limn an ∈ C. By the continuity of r(x) we have
r(a) = 0, which implies that a is a fixed point of T . �

Equality (∗) used in the proof of Lemma 3.2 for L1([0, 1]) also holds for L1(μ) for
μ either a finite or σ-finite measure and implies that 1+rτ (1) = 2 when X = L1(μ).
Consequently we can deduce:

Corollary 3.4. Let C be a norm-closed convex bounded subset of L1(μ) and let
T : C → C be an affine Lipschitzian mapping. Then T has a fixed point whenever

S(T ) <
2

t(C)
.

In particular, if we consider any convex bounded subset of L1(μ) which is τ -
closed, we can derive the existence of a fixed point for every affine Lipschitzian
mapping with S(T ) < 2. An example of such a set is BL1(μ), the closed unit ball of
L1(μ). Furthermore, the failure of the fixed point property for affine nonexpansive
mappings in closed convex subsets of L1([0, 1]) (or �1 which is isometrically embed-
ded in L1([0, 1])) can only occur when t(C) attains its maximum value 2. Note that
the affinity condition cannot be dropped because there exist some nonexpansive
mappings from BL1([0,1]) into itself without fixed points. In fact, for every norm-
closed convex bounded set C of L1([0, 1]) containing a closed interval, there is a
fixed point free nonexpansive mapping T : C → C [5] (see also [12, Chapter 2] and
[20]).
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We next show further examples of norm-closed convex bounded subsets of
L1([0, 1]) where Theorem 3.3 can be applied:

Example 3.5. We use the following notation:

C := {f ∈ L1([0, 1]) : f ≥ 0,

∫ 1

0

f(t)dt = 1},

Ca := co(C ∪ {a}), a ∈ [0, 1].

All these sets are norm-closed, convex, and bounded. They are not weakly compact
because they contain the sequence {nχ[0,1/n]}, which has no weakly convergent
subsequence. Furthermore, no one is contained in a compact set for the topology
of the convergence in measure, since they contain the sequence {1 + rn} (where
{rn} is the Rademacher sequence) which has no a.e. convergent subsequence. In
particular, we cannot deduce existence of fixed points for these sets by using any
known fixed point theorem for compact in measure sets, as in [8]. We will prove
that t(Ca) = 1 + a for every a ∈ [0, 1].

Let {gn := λnfn + (1− λn)a} be a sequence in Ca which is convergent to some
g a.e., where (λn) ∈ [0, 1] and (fn) ⊂ C. Passing to a subsequence, if necessary, we
can assume that λn converges to some λ ∈ [0, 1], which implies that {fn} converges
to a function f ≥ 0 a.e. and g = λf + (1 − λ)a. From Fatou’s Lemma we obtain
‖f‖ ≤ 1. We have

lim sup
n

‖gn − g‖ = lim sup
n

‖λnfn + (1− λn)a− λf − (1− λ)a‖

= λ(lim sup
n

‖fn − f‖) = λ(lim sup
n

‖fn‖ − ‖f‖)

= λ(1− ‖f‖).
Furthermore, if f �= 0 we have that the function

f + (1− ‖f‖)a = ‖f‖
(

f

‖f‖

)
+ (1− ‖f‖)a

belongs to Ca. The same is true if f = 0. Denote h = (1−λ)a+λ(f+(1−‖f‖)a) ∈
Ca. We have

lim sup
n

‖gn − h‖ = lim sup
n

‖gn − g‖+ ‖g − h‖

= λ(1− ‖f‖) + λ(1− ‖f‖)a
= (1 + a) lim sup

n
‖gn − g‖.

Thus, t(Ca) ≤ 1 + a. The equality is a consequence of the fact that the sequence
fn = {nχ[0,1/n]} converges to 0 a.e. and lim supn ‖fn−f‖ ≥ 1+a for every f ∈ Ca.

Therefore, for every a ∈ [0, 1] and T : Ca → Ca affine Lipschitzian with S(T ) < 2
1+a ,

the set of fixed points is nonempty.

Besides the function spaces L1(μ), there are some broader classes of function Ba-
nach spaces with the uniform Opial property with respect to the almost everywhere
convergence and satisfying Komlós’ condition. Indeed, in case of Orlicz function
spaces for an Orlicz function Φ satisfying the Δ2-condition, it was proved in [4, The-
orem 3] that the Orlicz space X = LΦ(μ) verifies the uniform Opial condition w.r.t.
the convergence almost everywhere and

1 + rτ (1) ≥ a

(
1

2

)
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where the function a(·) was defined by

a(δ) = inf

{
Φ−1(t)

Φ−1(δt)
: t > 0

}
, ∀δ > 0.

Thus we can conclude:

Corollary 3.6. Let Φ be an Orlicz function satisfying the Δ2-condition and let
X = LΦ(μ) be endowed with the Luxemburg norm. Let C be a norm-closed convex
bounded set and let T : C → C be an affine Lipschitzian mapping with

S(T ) <
a(1/2)

t(C)
.

Then T has a fixed point.

A similar result can be obtained for Orlicz function spaces endowed with the
Orlicz norm in case that Φ is an N -function [4, Theorem 5].

To finish this section, we extend our results to noncommutative L1-spaces asso-
ciated to a finite von Neumann algebra. Note that for every σ-finite measure space,
the Banach space L∞(μ) is a finite von Neumann algebra and the corresponding
L1(μ) is a particular example of a noncommutative (in fact, commutative) L1-
space. For standard notation and some background on noncommutative L1-spaces
the reader can consult for instance [15, 18].

Let (M, τ ) be a finite von Neumann algebra, and consider X = L1(M, τ ) en-
dowed with the usual norm

‖x‖ = τ (|x|).
The measure topology is defined via the following fundamental system of neighbor-
hoods of zero: for every ε, δ > 0 let

N(ε, δ) = {x ∈ M : ∃ p projection in M with ‖xp‖∞ ≤ ε and τ (p⊥) ≤ δ}.

In the case that we consider L1([0, 1]) and the trace given by τ (f) =
∫ 1

0
fdx, the

previous topology coincides with the usual topology of the convergence in measure.
Note that L1(M, τ ) is an L-embedded Banach space and the measure topology is
an abstract measure topology in the sense of [17]. Thus, equality (∗) given in the
proof of Lemma 3.2 can be generalized to the frame of L1(M, τ ) and the measure
topology (see [11, 16, 17]), and Komlós’ condition is extended in [19, Proposition
3.11]. As a consequence of Theorem 3.3 we can conclude:

Corollary 3.7. Let (M, τ ) be a finite von Neumann algebra and let C be a norm-
closed convex bounded subset of L1(M, τ ). Every affine Lipschitzian mapping T :
C → C has a fixed point whenever

S(T ) <
2

t(C)
.

In the case that C is closed in measure, such as when C is the close unit ball, T
has a fixed point if S(T ) < 2.

4. Some sharp examples

In this section, we show that the statement of Theorem 3.3 is sharp for every
possible value of t(C). First, we check that either the condition t(C) = 2 or
S(T ) = 2 does not imply the existence of fixed points in L1([0, 1]).
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Example 4.1. Let C be the subset of L1([0, 1]) given in Example 3.5. For every
f ∈ L1([0, 1]) we define T (f)(t) = 2f(2t), where we assume f(t) = 0 if t > 1. Note
that T is an affine isometry, T (C) ⊂ C, and supp Tn(f) ⊂ [0, 1/2n] for every n ∈ N.
This implies that f = 0 a.e., which does not belong to C, is the unique possible
fixed point for T . Consequently, T : C → C fails to have a fixed point and t(C)
must be equal to 2.

Example 4.2. We consider the set C0 introduced in Example 3.5, which verifies
t(C0) = 1. Define G : C0 → C0 by G = TR, where T is the mapping in Example
4.1 and R : C0 → C is given by

R(f) = (1− ‖f‖) + f.

Note that ‖λf + (1− λ)g‖ = λ‖f‖+ (1− λ)‖g‖ for every f, g ∈ C0, which implies
that R is an affine retraction. Furthermore G is fixed point free because T is. Since
(TR)n = TnR and |R| ≤ 2, S(G) ≤ 2. Finally, Corollary 3.4 implies that S(G) = 2
due to the absence of a fixed point.

Finally, for every possible value of t(C) ∈ (1, 2), we next show an example of
an affine Lipschitzian mapping, failing to have any fixed point, and with S(T ) =
1+rτ (1)
t(C) . That is, Theorem 3.3 is sharp in every possible case.

Example 4.3. Take (gn) a sequence of normalized functions in L1([0, 1]) supported
on a pairwise disjoint sequence of subsets of [0, 1]. For every t ∈ (1, 2) we consider
the following norm-closed convex bounded set:

Ct :=

{
s1(t− 1)g1 +

∞∑
n=2

sngn : sn ≥ 0,
∞∑

n=1

sn = 1

}
.

Define T : Ct → Ct by

T

(
s1(t− 1)g1 +

∞∑
n=2

sngn

)
=

∞∑
n=1

sngn+1.

It is not difficult to check that T is fixed point free, affine, and

‖Tnf − Tng‖ ≤ 2

t
‖f − g‖

for every f, g ∈ Ct. For f = (t− 1)g1 and g = g2 we have

‖Tnf − Tng‖ = ‖gn+1 − gn+2‖ = 2 =
2

t
‖f − g‖,

which implies that S(T ) = 2
t . Now let us check that t(Ct) = t. Indeed, let (fn)

be a sequence in C which converges a.e. to some f ∈ L1([0, 1]). In particular
f = s1(t− 1)f1 +

∑∞
n=2 snfn, where δf :=

∑∞
n=1 sn ≤ 1 and

lim sup
n

‖fn − f‖ = lim sup
n

‖fn‖ − ‖f‖ = 1− δf .

Let g = f + (1− δf )(t− 1)f1 ∈ Ct. Then

inf
h∈Ct

lim sup
n

‖fn − h‖ ≤ lim sup
n

‖fn − g‖

= lim sup
n

‖fn − f‖+ (1− δf )(t− 1)

= t lim sup
n

‖fn − f‖,
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which shows that t(Ct) ≤ t. Consider the sequence (gn)n≥2 ⊂ Ct which tends to
zero a.e. It can be checked that for every h ∈ Ct, lim supn ‖gn − h‖ ≥ t, and this
proves that t(Ct) = t for every t ∈ (1, 2).
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