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TRANSFERENCE FOR BANACH SPACE REPRESENTATIONS

OF NILPOTENT LIE GROUPS.

PART 1. IRREDUCIBLE REPRESENTATIONS

INGRID BELTIŢĂ, DANIEL BELTIŢĂ, AND JOSÉ E. GALÉ

(Communicated by Kailash C. Misra)

Abstract. We establish a general CCR (liminarity) property for uniformly
bounded irreducible representations of nilpotent Lie groups on reflexive Banach
spaces, extending the well-known property of unitary irreducible representa-
tions of these groups on Hilbert spaces. We also prove that this conclusion
fails for many representations on non-reflexive Banach spaces. Our approach
to these results blends the method of transference from abstract harmonic
analysis and a systematic use of spaces of smooth vectors with respect to Lie
group representations.

1. Introduction

This paper was partially motivated by the well-known fact in operator theory
that if H is a separable complex Hilbert space and A ⊆ B(H) is an associative
∗-subalgebra for which there are no non-trivial invariant subspaces, with its norm-
closure A, then the following implication holds true:

K(H) ∩ A �= {0} =⇒ K(H) ⊆ A,

where K(H) is the set of all compact operators on H. In particular, if A ⊆ K(H),
then A = K(H). These implications do not carry over directly to operator algebras
on Banach spaces (cf. [19]), but we explore this phenomenon from the perspective
of representation theory of Lie groups, as follows.

If π : G → B(H) is a unitary irreducible representation of a nilpotent Lie group
on a complex Hilbert space, then it is a classical result that for its corresponding
Banach algebra representation π : L1(G) → B(H) one has π(L1(G)) ⊆ K(H), hence

π(L1(G)) = K(H) by the above discussion. (See for instance [5, Cor. 3] and [4, Th.
4.2.1].) The main theorem of the present paper (Theorem 2.10) says that the
classical result stated above still holds true with the Hilbert spaceH replaced by any
reflexive Banach space Z, the unitary irreducible representation π replaced by any
irreducible representation satisfying sup

g∈G
‖π(g)‖ < ∞, and with K(H) replaced by
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the norm-closure of finite-rank operators on Z. We also prove that this conclusion
is sharp in the sense that it fails for many representations on non-reflexive Banach
spaces (Theorem 3.3). See also [16] for other interesting results on differentiability
of vectors with respect to Banach space representations.

The method for obtaining our results consists of the study of the way the clas-
sical result transfers from Hilbert spaces to Banach space. The techniques we use
rely on intertwining operators between spaces of smooth vectors for representations
of G on various Banach spaces, and thereby transferring information between these
representations. In a sequel to the present paper, we will use this method of trans-
ference, along with some of the results established here, in order to study multipliers
associated to unitary irreducible representations of nilpotent Lie groups. We note
that other interesting applications of Banach space representations of locally com-
pact groups were recently obtained. See for instance [6], [10], and the references
therein.

Notation. Throughout this paper we denote by S(V) the Schwartz space on a finite-
dimensional real vector space V . That is, S(V) is the set of all smooth functions that
decay faster than any polynomial together with their partial derivatives of arbitrary
order. We use 〈·, ·〉 to denote any duality pairing between finite-dimensional real
vector spaces whose meaning is clear from the context.

We also use the convention that Lie groups are denoted by upper case Latin let-
ters and Lie algebras are denoted by their corresponding lower case Gothic letters.
For any finite-dimensional real Lie algebra g we denote by gC := C ⊗R g its com-
plexification, which is a complex Lie algebra, and by U(gC) the universal enveloping
algebra of gC, which is a complex unital associative ∗-algebra and is isomorphic to
the algebra of distributions with the support at the unit element 1 ∈ G for any Lie
group G whose Lie algebra is isomorphic to g.

By nilpotent Lie group we always mean a connected, simply connected, nilpotent
Lie group. For such a group G, its exponential map expG : g → G is a diffeomor-
phism whose inverse is denoted by logG : G → g. Using this diffeomorphism, one
defines the Schwartz space S(G) := {ϕ◦logG | ϕ ∈ S(g)}. We will also need C∞

0 (G),
the space of compactly supported smooth functions on G.

2. CCR property on reflexive Banach spaces

A uniformly bounded representation of a locally compact group G on a Banach
space is said to have the CCR property if the closure of the image of L1(G) under
that representation is equal to the norm-closure of finite-rank operators on that
Banach space. This terminology CCR (completely continuous representation) is
inspired by the one that has been long used and applied for unitary irreducible
representations on Hilbert spaces, where the alternative French name “liminaire”
was also used. See for instance [8].

The main results of this section concern nilpotent Lie groups and we actually
point out in Remark 2.11 that they cannot be directly extended further. Neverthe-
less, some auxiliary results and lemmas hold true for more general classes of groups
hence we have stated and proved them in their natural level of generality as they
may hold an independent interest.

Let X be any complex Banach space with a fixed norm that defines its topol-
ogy. Assume that π : G → B(X ) is a continuous representation which is uniformly
bounded, in the sense that sup{‖π(g)‖ | g ∈ G} < ∞. Continuity of π means that
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its corresponding map G × X → X , (g, x) �→ π(g)x, is continuous. Then one can
define the continuous homomorphism of Banach algebras

π : L1(G) → B(X ), π(ϕ) =

∫

G

ϕ(g)π(g)dg,

where the above integral is strongly convergent.
In the next definition we recall the smooth vectors for Banach space representa-

tions, and the smooth operators for Hilbert space representations.

Definition 2.1.
(1) The space of smooth vectors for the representation π is

X∞ := {x ∈ X | π(·)x ∈ C∞(G,X )}.
The linear space X∞ is endowed with the linear topology which makes the linear
injective map X∞ → C∞(G,X ), x �→ π(·)x into a linear topological isomorphism
onto its image. Then X∞ is a Fréchet space which is continuously and densely
embedded in X (see for instance [3, Prop. 2.2] and the references therein). The
derived representation

dπ : g → End (X∞), dπ(X)x =
d

dt

∣∣∣
t=0

π(expG(tX))x

is a Lie algebra representation, so it extends to a unital homomorphism of complex
associative algebras dπ : U(gC) → End (X∞).
(2) Assume that X is a Hilbert space. Then the set B(X )∞ of smooth operators for
the representation π is

B(X )∞ := {T ∈ B(X ) | T (X ) ⊆ X∞ and T ∗(X ) ⊆ X∞}.
(See [3, Sect. 3] for more details and [3, Cor. 3.1] for the natural topology on
B(X )∞ when π is a unitary irreducible representation.)

It is easily checked that π(S(G))X ⊆ X∞. In particular, one has a representation
of the convolution algebra S(G),

πS : S(G) → End (X∞), πS(ϕ) := π(ϕ)|X∞ .

The above representation πS is used in this paper as a purely algebraic object
(a morphism of associative algebras) without any continuity property. In this con-
nection we also make the following definition.

Definition 2.2. With the above notation, the uniformly bounded continuous repre-
sentation π : G → B(X ) is called strongly irreducible if its associated representation
πS : S(G) → End (X∞) is algebraically irreducible, that is, the only linear subspaces
of X∞ that are invariant to all the operators in πS(S(G)) are {0} and X∞.

On the other hand, the representation π is called topologically irreducible (for
short irreducible) if the only closed linear subspaces of X that are invariant to all
the operators in π(G) are {0} and X .

Example 2.3. If H is a Hilbert space and the bounded continuous representation
π : G → B(H) is topologically irreducible, then π is also strongly irreducible.

In fact, since the group G is amenable and π is bounded, it follows that π is
similar to a unitary representation. Then, it is known that unitary irreducible
representations of nilpotent Lie groups are strongly irreducible; see [12, Cor. 3.4.1].
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Lemma 2.4. Let G be any connected Lie group and assume that π : G → B(X ) and
τ : G → B(Y) are uniformly bounded continuous representations. For any topologi-
cal linear isomorphism A : X∞ → Y∞ the following assertions are equivalent:

(i) For all g ∈ G one has Aπ(g)|X∞ = τ (g)A.
(ii) For all X ∈ g one has Adπ(X) = dτ (X)A.

Proof. This is a special case of [17, Cor. 3.3]. �

The following notion of almost equivalence of group representations is suggested
by [17, Def. 3.3].

Definition 2.5. In the setting of Lemma 2.4, we say the representations π and τ
are almost equivalent, and the operator A is called an almost equivalence.

Remark 2.6. The relation of almost equivalence of group representations is reflexive,
symmetric, and transitive, and for any pair of unitary representations this relation
coincides with unitary equivalence by [17, Th. 3.4].

It is interesting to study how various properties of Lie group representations are
transferred by almost equivalence. Theorem 2.10 below shows that, in the case
of nilpotent Lie groups, the CCR property of their unitary irreducible representa-
tions propagates under a suitable form to all their uniformly bounded irreducible
representations on reflexive Banach spaces.

Lemma 2.7. In the setting of Lemma 2.4 the following assertions hold:

(i) If A is regarded as a densely-defined linear operator from X into Y, then
its closure A : D(A) → Y is an injective operator.

(ii) For every ϕ ∈ C∞
0 (G) and x ∈ D(A) one has π(ϕ)x ∈ X∞ ⊆ D(A) and

Aπ(ϕ)x = Aπ(ϕ)x = τ (ϕ)Ax.
(iii) If G is a nilpotent Lie group, then the above assertion (ii) holds for ϕ ∈

S(G).

Proof. That A is a closable operator follows by [17, Th. 3.2], while injectivity of A
was noted in the proof of [17, Cor. 3.3].

Assertions (ii)–(iii) follow by Hille’s theorem which says that closed linear oper-
ators commute with the Bochner integral (see [11, Th. 3.7.12]). �

Lemma 2.8. Let G be any locally compact group with a set A ⊆ L1(G) that is
invariant under right translations by some dense subset Γ of G and such that for
every neighborhood V of 1 ∈ G there exists ϕ ∈ A with suppϕ ⊆ V , 0 ≤ ϕ almost
everywhere on G, and

∫
G

ϕ(g)dg = 1.

If π : G → B(X ) is any bounded continuous representation with its correspond-
ing Banach algebra representation π : L1(G) → B(X ), then for any closed linear
subspace Y ⊆ X one has π(G)Y ⊆ Y ⇐⇒ π(A)Y ⊆ Y.

Proof. The implication “⇒” is clear. For the converse implication we use the well-
known fact that for V and ϕ ∈ A as in the statement one has

‖π(ϕ)x− x‖ ≤
∫

G

ϕ(g)‖π(g)x− x‖dg ≤ sup
g∈V

‖π(g)x− x‖
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for all x ∈ X . Thus, by using in addition the continuity of π : G → B(X ), it follows
that

(∀x ∈ X ) inf
ϕ∈A

‖π(ϕ)x− x‖ = 0.

Then, by the hypothesis that A is invariant under right translations by Γ ⊆ G, we
obtain

(∀x ∈ X )(∀g ∈ Γ) inf
ϕg−1∈A

‖π(ϕ)x− π(g)x‖ = inf
ϕ∈A

‖π(ϕ)π(g)x− π(g)x‖ = 0,

where ϕg−1 := ϕ(·g−1). This implies that if Y ⊆ X is any closed linear subspace
with π(A)Y ⊆ Y , then π(Γ)Y ⊆ Y , hence also π(G)Y ⊆ Y . �

We recall that the unitary dual of a Lie group is a set whose points are the
unitary equivalence classes of unitary irreducible representations of that group.

Theorem 2.9. Let π : G → B(X ) be any uniformly bounded continuous represen-
tation of a nilpotent Lie group G. Then π is topologically irreducible if and only
if it is strongly irreducible. If this is the case, then there exists a unique point in
the unitary dual of G consisting of unitary irreducible representations of G which
are almost equivalent to π and whose spaces of smooth vectors are isomorphic as
S(G)-modules with the space of smooth vectors of π.

Proof. First let π : G → B(X ) be any strongly irreducible representation and let
{0} �= Y ⊆ X be any closed linear subspace with π(G)Y ⊆ Y . Then one has also
π(S(G))Y ⊆ Y by Lemma 2.8. On the other hand, π(S(G))Y ⊆ X∞ and π(S(G))Y
is a dense linear subspace of Y . Moreover, since {0} �= Y , it is easily checked that
{0} �= π(S(G))Y hence π(S(G))Y = X∞ by the assumption that π is strongly
irreducible along with the fact that the linear space π(S(G))Y is invariant under
the algebra representation πS : S(G) → End (X∞). Thus X∞ = π(S(G))Y ⊆ Y ,
which implies X = Y , hence π is topologically irreducible.

For the converse implication assume that π is topologically irreducible. Using
Lemma 2.8 for A = S(G), it then follows that π : S(G) → B(X ) is a topologically
irreducible representation, and now the conclusion follows by [13, Th.]. The unique-
ness of the point in the unitary dual of G as in the statement follows by [17, Th.
3.4]. �

The second part of the above theorem says that one can find a unitary irreducible
representation π0 : G → B(H) (on a Hilbert space) and a closed injective linear
operator A : D(A) → X whose domain D(A) is dense in H and contains H∞,
with range RanA dense in X and contains X∞, and which defines by restriction
a topological isomorphism of S(G)-modules A|H∞ : H∞ → X∞. Next, we take
advantage of the properties of π0 to establish Theorem 2.10. We recall that K(X )
denotes the norm-closure of the finite-rank operators in B(X ), which is equal to the
set of all compact operators on X if the Banach space X has the approximation
property.

Theorem 2.10. Let π : G → B(Z) be any uniformly bounded continuous represen-
tation of a nilpotent Lie group G. If π is topologically irreducible, then the following
assertions hold:

(i) The set π(S(G)) consists of nuclear operators on Z, and π(L1(G)) ⊆ K(Z).
(ii) If moreover the Banach space Z is reflexive, then π(S(G)) contains a norm-

dense subspace of K(Z) and the representation π has the CCR property.
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Proof. (i) We prove first that for every ϕ ∈ S(G), the operator π(ϕ) : Z → Z
is nuclear. To this end note that π(ϕ)Z ⊆ Z∞, and then π(ϕ) : Z → Z∞ is a
continuous operator by the closed graph theorem, using the fact that the inclusion
map Z∞ ↪→ Z is continuous and Z∞ is a Fréchet space. Then the operator π(ϕ)

factorizes as Z π(ϕ)−→Z∞ ↪→ Z. Therefore the assertion will follow by [20, Prop. 47.1
and Th. 50.1((a),(c))] as soon as we will have proved that Z∞ is a nuclear space.

For that, we use the fact that Theorem 2.9 gives a topological isomorphism of
S(G)-modules H∞ � Z∞ The space of smooth vectors H∞ is well known to be a
nuclear Fréchet space (see for instance [3, Cor. 3.1(1.)]), hence also Z∞ is a nuclear
space.

It follows that for arbitrary ϕ ∈ S(G) one has π(ϕ) ∈ K(Z), and this, together
with the continuity of π, implies the inclusion π(L1(G)) ⊆ K(Z).

(ii) Assume that the Banach space Z is reflexive. To prove that the inclusion
π(L1(G)) ⊆ K(Z) is actually an equality, it suffices to check that π(S(G)) contains
a dense subspace of K(Z). More precisely, for a suitable dense linear subspace
Y ⊆ Z∗ we prove that

(2.1) Y ⊗ Z∞ ⊆ π(S(G)).

The set of finite-rank operators

H∞ ⊗H∞ := span {(· | h)k | h, k ∈ H∞}

is contained in B(H)∞, where (· | ·) is the scalar product of the Hilbert space
H. Since the map π0 : S(G) → B(H)∞ is surjective (see [12, Th. 3.4]), for any
h, k ∈ H∞ there exists ψ ∈ S(G) such that one has π0(ψ)v = (v | h)k for all
v ∈ H∞. Using the topological isomorphism of S(G)-modules A : H∞ → Z∞ we
now obtain

π(ψ)Av = Aπ0(ψ)v = (v | h)Ak = (A−1Av | h)Ak = 〈(A−1)∗h,Av〉Ak,

where h := (· | h) ∈ H∗ ⊆ (H∞)∗ and (A−1)∗ : (H∞)∗ → (Z∞)∗ is the transpose
mapping of A−1. It follows that

(2.2) (∀w ∈ Z∞) π(ψ)w = 〈(A−1)∗h,w〉Ak.

Here we know that π(ψ) ∈ B(Z) since ψ ∈ S(G) and π is uniformly bounded, hence
using also the fact that Z∞ is dense in Z, it follows that for arbitrary h ∈ H∞ the
functional (A−1)∗h ∈ (Z∞)∗ is continuous with respect to the norm of Z and then
it uniquely extends to a functional (A−1)∗h ∈ Z∗. Thus, denoting

Y := span {(A−1)∗h | h ∈ H∞} ⊆ Z∗

one obtains (2.1). It remains to check that Y is a dense subspace of Z∗.
To this end we argue by contradiction. If Y were not dense in Z∗, then by the

Hahn-Banach theorem there would exist γ ∈ (Z∗)∗ \ {0} with γ(y) = 0 for all
y ∈ Y . Using the fact that Z is a reflexive Banach space it then follows that there
exists x ∈ Z \{0} with 〈(A−1)∗h, x〉 = 0 for all h ∈ H∞. By (2.2), this implies that
π(ψ)x = 0 for every ψ ∈ S(G) with π0(ψ) ∈ (H∗)∞ ⊗H∞.

But the surjective map π0 : S(G) → B(H)∞ is open by the open mapping theo-
rem, and on the other hand the set of finite-rank operators H∞ ⊗H∞ is dense in
the Fréchet space B(H)∞ by [3, Cor. 3.3]. Then it is straightforward to check that
{ψ ∈ S(G) | π0(ψ) ∈ H∞⊗H∞} is a dense subset of S(G). This implies π(ψ)x = 0
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for every ψ ∈ S(G), hence x = 0, which is a contradiction with x ∈ Z \ {0}. This
completes the proof of the theorem. �

In order to point out the significance of Theorem 2.10, we recall that many
important Banach spaces, as for instance Lp-spaces or more general mixed-norm
Lebesgue spaces Lp1,...,pk , carry irreducible representations of nilpotent Lie groups
or even exponential solvable Lie groups (that is, Lie groups G whose exponential
map expG : g → G is bijective); see [15] and [14]. Let us also make the following
remark that shows that Theorem 2.10 cannot be extended beyond nilpotent Lie
groups.

Remark 2.11. Let G be any exponential solvable Lie group. Then the following
assertions are equivalent:

(i) G is a CCR (liminary) group, that is, every unitary irreducible representa-
tion of G on a Hilbert space has the CCR property;

(ii) G is type R, that is, for every g ∈ G all the eigenvalues of the operator
AdG g : gC → gC belong to the unit circle T (equivalently, for every x ∈ g,
all the eigenvalues of the operator adg x : gC → gC are purely imaginary);

(iii) every coadjoint orbit of G is a closed subset of g∗;
(iv) G is a nilpotent Lie group.

In fact, since G is an exponential Lie group, it is a connected, simply connected,
solvable Lie group of type I (see [1, Sect. 0, Rem. 3]). Then, using also Glimm’s
characterization of separable C∗-algebras of type I, we obtain that G has the prop-
erty GCR (is postliminary), that is, for every unitary irreducible representation
π : G → B(Hπ) all compact operators on Hπ are contained in the norm-closure of
π(L1(G)). Hence (i)–(ii) are equivalent by [2, Ch. V, Th. 1–2].

By [9, Prop. 5.2.13, Th. 5.2.16], since G is an exponential Lie group, it follows
that for every x ∈ g, the operator adG x : gC → gC has no non-zero purely imaginary
eigenvalues, hence (ii) and (iv) are equivalent. Finally, the equivalence of (i) to (iii)
is discussed in [9, Th. 5.3.31 infra] (see also [18, Th. 1]).

3. CCR fails on non-reflexive Banach spaces

We now turn to obtaining a result (Theorem 3.3) which shows that the CCR
property in Theorem 2.10 may not be obtained if the hypothesis of reflexivity of
the Banach space Z is removed, and also that the CCR property of Banach space
representations is not preserved by almost equivalence.

Lemma 3.1. Let X be a Banach space with a closed linear subspace Θ � X ∗, and
denote by KΘ(X ) the norm-closed linear subspace of K(X ) spanned by the rank-one
operators θ(·)y with θ ∈ Θ and y ∈ X . Then one has KΘ(X ) � K(X ).

Proof. Since Θ � X ∗, there exists ξ ∈ X ∗ with

(3.1) (∀θ ∈ Θ) ‖ξ − θ‖ ≥ 2.

We now fix x ∈ X arbitrary with ‖x‖ = 1 and we will check that

(3.2) (∀K ∈ KΘ(X )) ‖ξ(·)x−K‖ ≥ 1/2,

and in particular the rank-one operator ξ(·)x does not belong to KΘ(X ), which
implies the assertion.
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It suffices to prove (3.2) for operators K for which there exist an integer n ≥ 1,
vectors y1, . . . , yn ∈ X , and functionals θ1, . . . , θn ∈ Θ with

K =

n∑
j=1

θj(·)yj ,

since the set of all operators of this form is norm-dense in KΘ(X ). To estimate the
left-hand side of (3.2) we recall that for any operator T ∈ B(X ) one has

(3.3) ‖T‖ = sup{|η(Tv)| | v ∈ X , ‖v‖ = 1; η ∈ X ∗, ‖η‖ = 1},
as a direct consequence of the Hahn-Banach theorem.

Since ‖x‖ = 1, again by the Hahn-Banach theorem, there is η ∈ X ∗ with ‖η‖ = 1
and

(3.4) |η(x)| > 1/2.

In particular, η(x) �= 0.
For all t1, . . . , tn ∈ C one has ‖ξ −

∑n
j=1 tjθj‖ ≥ 2 by (3.1), hence there exists

v ∈ X with ‖v‖ = 1 and |ξ(v)−
n∑

j=1

tjθj(v)| ≥ 1. Using this with tj := η(yj)/η(x)

for j = 1, . . . , n, we obtain

(3.5) (∃v ∈ X , ‖v‖ = 1) |η(x)ξ(v)−
n∑

j=1

η(yj)θj(v)| ≥ |η(x)|.

Now, denoting T := ξ(·)x−K = ξ(·)x−
n∑

j=1

θj(·)yj , one has

η(Tv) = η(x)ξ(v)−
n∑

j=1

η(yj)θj(v)

and, by (3.4)–(3.5), we obtain |η(Tv)| ≥ 1/2. Then ‖T‖ ≥ 1/2 by (3.3), which
completes the proof of (3.2). �
Lemma 3.2. Let V �= {0} be a finite-dimensional real vector space, and define the
Banach space X := L1(V). Let K1(X ) be the norm-closed linear subspace of B(X )
spanned by the integral operators on X defined by integral kernels in S(V × V).
Then one has K1(X ) � K(X ).

Proof. For every K ∈ S(V × V) let us denote by TK ∈ B(X ) the integral operator
defined by the integral kernel K. We also define the mapping

Ψ: S(V × V) → B(X ), Ψ(K) := TK .

One has that

(∀K ∈ S(V × V)) ‖TK‖ ≤ sup
y∈V

∫

V

|K(x, y)|dx,

thus the mapping Ψ is continuous with respect to the usual Fréchet topology of
S(V × V). Since the algebraic tensor product S(V)⊗S(V) is dense in S(V × V), it
then follows that K1(X ) is the norm-closure of the set {Ψ(K) | K ∈ S(V)⊗S(V)}.
As this set consists of finite-rank operators on X , we obtain K1(X ) ⊆ K(X ).

To check that this inclusion is strict we define Θ as the norm-closure of S(V)
viewed as a linear subspace of the Banach space X ∗ � L∞(V). That is, Θ is the
space of continuous functions on V that vanish at ∞. One clearly has Θ � X ∗,
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hence KΘ(X ) � K(X ) by Lemma 3.1. On the other hand, since S(V) ⊆ Θ, it is
readily seen that K1(X ) ⊆ KΘ(X ), hence K1(X ) � K(X ). �

Theorem 3.3. If G is a nilpotent Lie group, then for every unitary irreducible
representation π : G → B(H) on a Hilbert space H with dimH = ∞ there exists
a uniformly bounded continuous representation π1 : G → B(X ) which is almost
equivalent to π and does not have the CCR property, where X = L1(V for a suitable
finite-dimensional real vector space V.

Proof. We recall from [7, Lemma 2.1] that one can find a finite-dimensional real
vector space V and a family of continuous representations πp of G by isometries of
Lp(V) for every p ∈ [1,∞), satisfying the following conditions:

(1) The unitary representations π and π2 are unitary equivalent (so V �= {0}).
(2) There exist continuous functions P : G × V → R and Q : G × V → V

such that, for every g ∈ G, the function P (g, ·) is a polynomial and the
map Q(g, ·) is a measure-preserving polynomial diffeomorphism of V with
(πp(g)ϕ)(v) = eiP (g,v) ϕ(Q(g, v)) for all g ∈ G, v ∈ V , ϕ ∈ S(V), and
p ∈ [1,∞).

We now check that the representation π1 does not have the CCR property. By
[4, Th. 4.2.1], for every p ∈ [1,∞) one has πp(S(G)) ⊆ Kp(L

p(V)), whereKp(L
p(V))

denotes the norm-closed linear subspace spanned by the integral operators on Lp(V)
defined by integral kernels in S(V×V). For p = 1 one obtains π1(S(G)) ⊆ K1(X ) �
K(X ) by Lemma 3.2, which directly implies that the representation π1 does not have
the CCR property.

To complete the proof it remains to show that the representations π2 and π1

are almost equivalent. To this end we will check that the space of smooth vectors
for πp is S(V) for arbitrary p ∈ [1,∞). We denote by P(V) the set of all linear
partial differential operators on V with polynomial coefficients. It follows by [4, Th.
4.1.1] that dπ2(U(gC)) = P(V). Since πp and π2 agree on S(V) ⊆ Lp(V) ∩ L2(V),
we actually have that dπ2(U(gC)) = dπp(U(gC)) = P(V). On the other hand, for
1 ≤ p ≤ ∞, the seminorms on S(V)

ϕ �→ sup
|α|+|β|≤k

‖xαDβϕ‖Lp(V), k ∈ N,

are continuous and define the same topology. We thus obtain that, if {X1, . . . , Xm}
is a basis in g and 1 ≤ p < ∞, the seminorms

ϕ �→ sup
m≤k

‖dπp(Xj1) · · ·dπp(Xjm)ϕ‖Lp(V), k ∈ N,

are continuous and define the same topology on S(V). Then, by [17, Corollary 4.1],
the spaces of smooth vectors for πp and π2 are the same, and this space is S(V).
(See also [12, page 346] for the relation between S(V) and P(V).) This concludes
the proof. �

Remark 3.4. Assume the setting of Theorem 2.10 and denote by Aπ the norm-
closure of π(L1(G)). Then the CCR property of π means Aπ = K(Z) when Z is
reflexive. An alternative proof of this equality, which however gives no information
on π(S(G)), can be obtained as follows.

The set Aπ is a closed subalgebra of B(Z). Since the representation π is irre-
ducible, then Lemma 2.8 shows that the operator algebra Aπ is transitive, that is,
there are no non-trivial invariant subspaces Aπ. Moreover, one has Aπ ⊆ K(Z) by
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Theorem 2.10(i), and in particular Aπ ∩ K(Z) �= {0}. If the Banach space Z is re-
flexive, it then follows by [19, Cor. 7.4.8] that Aπ contains all finite-rank operators
on Z, hence Aπ ⊇ K(Z), which implies Aπ = K(Z).

On the other hand, it is known from [19, Ex. 7.4.4] that on the dual of every
non-reflexive Banach space there exists a transitive norm-closed operator algebra
that contains some but not all finite-rank operators. The result of our Theorem 3.3
and its proof provide examples of transitive operator algebras of this type which
live however on a different class of Banach spaces, namely on Banach spaces of the
form L1(V) where V is a finite-dimensional real vector space.
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Departamento de matemáticas and I.U.M.A., Universidad de Zaragoza, 50009 Zara-

goza, Spain

Email address: gale@unizar.es

https://www.ams.org/mathscinet-getitem?mr=0310137
https://www.ams.org/mathscinet-getitem?mr=0228625
https://www.ams.org/mathscinet-getitem?mr=1736065
https://www.ams.org/mathscinet-getitem?mr=0225131

	1. Introduction
	2. CCR property on reflexive Banach spaces
	3. CCR fails on non-reflexive Banach spaces
	Acknowledgments
	References

