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QUOTIENTS OF MAPPING CLASS GROUPS FROM Out(Fn)

KHALID BOU-RABEE AND CHRISTOPHER J. LEININGER

(Communicated by David Futer)

Abstract. We give a short proof of Masbaum and Reid’s result that mapping
class groups involve any finite group, appealing to free quotients of surface
groups and a result of Gilman, following Dunfield–Thurston.

Let Σg be a closed oriented surface of genus g and let Fn be a nonabelian free
group of rank n. The fundamental group, π1(Σg), is residually free [Bau62], and
Fn has a wealth of finite index subgroups [MKS04, p. 116]. In [DT06], N. Dunfield
and W. Thurston consider the action of the mapping class group Mod(Σg) on
the set of finite index normal subgroups of π1(Σg) with finite simple quotients
and in particular those containing the kernel of an epimorphism π1(Σg) → Fg.
Their observations relating to work of R. Gilman [Gil77] give rise to finite index
subgroups of Mod(Σg) that surject symmetric groups of arbitrarily large order; see
the discussion following the proof of [DT06, Theorem 7.4].

Theorem 1 (Dunfield–Thurston). For all g ≥ 3, r ≥ 1, there exists an epimor-
phism φ : π1(Σg) → Fg and a prime q, so that

{N � π1(Σg) | kerφ < N and π1(Σg)/N ∼= PSL(2, q)}
has at least r elements, and its (finite index ) stabilizer in Mod(Σg) acts as the full
symmetric group on this set.

We explain the proof of this in Section 1.2. In this note, we observe that since
every finite group embeds in some finite symmetric group, Theorem 1 provides a
new elementary proof of a result of G. Masbaum and A. Reid [MR12]. Recall that
a group G involves a group H if there exist a finite index subgroup L ≤ G and a
surjective map φ : L → H.

Corollary 2 (Masbaum–Reid). Let Σg,m be a surface of genus g with m punctures.
If 3g− 3+m ≥ 1 (or g = 1 and m = 0), then Mod(Σg,m) involves any finite group.

The few mapping class groups not covered by the corollary are finite groups; see
e.g. [FM12]. Corollary 2 is also proved using arithmetic methods by F. Grunewald,
M. Larsen, A. Lubotzky, and J. Malestein [GLLM15].

Further applications of the quotients from Theorem 1 include new proofs of
residual finiteness and separability of handlebody groups; see Section 3 for theorem
statements and proofs.
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1. Preliminaries

1.1. G-defining subgroups. Here we collect some results surrounding definitions
and discussions in Gilman [Gil77]. Let G and F be groups. A G-defining subgroup
of F is a normal subgroup N of F such that F/N is isomorphic to G. Let X(F,G)
denote the set of all G–defining subgroups of F . The automorphism group Aut(F )
acts on normal subgroups of F while preserving their quotients and hence on the
set X(F,G) of G–defining subgroups of F . Since inner automorphisms act trivially,
the action descends to an action of the outer automorphism group of F , Out(F ), on
X(F,G). If G is finite and F is finitely generated, one obtains a finite permutation
representation of Out(F ). Let Fn be the free group of rank n. The following is
Theorem 1 of [Gil77].

Theorem 3 (Gilman). For any n ≥ 3 and prime p ≥ 5, Out(Fn) acts on the
PSL(2, p)-defining subgroups of Fn as the alternating or symmetric group, and both
cases occur for infinitely many primes.

From the proof, Gilman obtains the following strengthened form of residual
finiteness for Out(Fn).

Corollary 4 (Gilman). For any n ≥ 3, the group Out(Fn) is residually finite
alternating and residually finite symmetric via the quotients from Theorem 3.

This means that for any φ ∈ Out(Fn) − {1}, there exist primes p so that the
action of Out(Fn) on X(Fn,PSL(2, p)) is alternating (and also primes p so that the
action is symmetric), and φ acts nontrivially.

We will also need the following well-known fact, obtained from the classical
embedding of a free group into PSL(2,Z) as a subgroup of finite index (cf. A. Peluso
[Pel66]).

Lemma 5. For any n ≥ 2, any element α ∈ Fn − {1}, and all but finitely many
primes p, there exists a PSL(2, p)–defining subgroup of Fn not containing α.

Proof. Let Fn be a finite index, free subgroup of rank n in the free group F2 :=
〈a, b〉. Identify Fn with its image in PSL(2,Z) under the injective homomorphism
F2 → PSL(2,Z) given by

a 	→
(
1 2
0 1

)
and b 	→

(
1 0
2 1

)
.

Let α ∈ Fn − {1} be given and let A ∈ SL(2,Z) be a matrix representing α. Since
α 
= 1, we may assume that A has either a nonzero off-diagonal entry d 
= 0 or
a diagonal entry d > 1. Then for any prime p not dividing d in the former case
or d ± 1 in the latter, we have that πp(α) is nontrivial in the quotient
πp : PSL(2,Z) → PSL(2, p); that is, α /∈ kerπp.

Since Fn has finite index in F2, there exists m ≥ 1 so that the matrices(
1 m
0 1

)
and

(
1 0
m 1

)

represent elements of Fn in PSL(2,Z). For any prime p not dividing m, the πp–
image of these elements generates PSL(2, p). Thus, for all but finitely many primes
p, kerπp ∩ Fn is a PSL(2, p)–defining subgroup not containing α. �
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1.2. Handlebody subgroups and maps to free groups. Let Σ = Σg be a
closed surface of genus g ≥ 2 and let H = Hg be a handlebody of genus g. Given
a homeomorphism φ : Σ → ∂H ⊂ H, the induced homomorphism is a surjection
φ∗ : π1(Σ) → π1(H) ∼= Fg. As is well-known, every epimorphism π1(Σ) → Fg arises
in this way (see e.g. [LR02, Lemma 2.2]). The kernel Δφ = ker(φ∗) is an Fg–
defining subgroup and is the subgroup generated by the simple closed curves on Σ
whose φ–images bound disks in H. We write Hφ for the handlebody H, equipped
with the homeomorphism φ : Σ → ∂H.

Let Mod(Hφ) denote the subgroup of the mapping class group Mod(Σ) consisting
of the isotopy classes of homeomorphisms that extend overHφ (via the identification
φ : Σ → ∂H). Equivalently, Mod(Hφ) consists of those mapping classes [f ] such
that f∗(Δφ) = Δφ; that is, Mod(Hφ) is the stabilizer in Mod(Σ) of Δφ. Any
element [f ] ∈ Mod(Hφ) induces an automorphism we denote Φ∗([f ]) ∈ Out(Fg),
which defines a homomorphism Φ∗ : Mod(Hφ) → Out(Fg). The main result of
[Gri64] implies the next proposition.

Proposition 6. For any g ≥ 0 and homeomorphism

φ: Σ → ∂H, Φ∗ : Mod(Hφ)→ Out(Fg)

is surjective.

The kernel of Φ∗, the set of mapping classes in Mod(Hφ) that act trivially on
π1(H), is also a well-studied subgroup denoted Mod0(Hφ).

Recall that X(Fg, G) and X(π1(Σ), G) are the sets of G–defining subgroups of
Fg and π1(Σ), respectively. Define

Xφ(π1(Σ), G) := {φ−1
∗ (N) | N ∈ X(Fg, G)} ⊂ X(π1(Σ), G).

Alternatively, this is precisely the set of G–defining subgroups containing Δφ:

Xφ(π1(Σ), G) = {N ∈ X(π1(Σ), G) | Δφ < N}.

Lemma 7. The handlebody subgroup is contained in the stabilizer

Mod(Hφ) < stabXφ(π1(Σ), G).

Moreover, if Out(Fg) acts on X(Fg, G) as the full symmetric group, then Mod(Hφ)
(and hence stabXφ(π1(Σ), G)) acts on Xφ(π1(Σ), G) as the full symmetric group.

Proof. Let N ∈ Xφ(π1(Σ), G) and let [f ] ∈ Mod(Hφ), where f is a representative
homeomorphism. Since f∗(Δφ) = Δφ, we have that Δφ < f∗(N) and f∗(N) ∈
Xφ(π1(Σ), G). Thus, f∗ preserves Xφ(π1(Σ), G), as required.

The last statement follows immediately from Proposition 6 and the fact that
the bijection from the correspondence theorem Xφ(π1(Σ), G) → X(Fg, G) is Φ∗–
equivariant. �

2. Mapping class groups involve any finite group:

The proofs of Theorem 1 and Corollary 2

Here we give the proof of Theorem 1, following Dunfield–Thurston (see [DT06,
pp. 505-506]).

Proof of Theorem 1. Fix g ≥ 3 and let Π be the infinitely many primes for which
Out(Fg) acts on the PSL(2, p)–defining subgroups as the symmetric group, guaran-
teed by Theorem 3. As a consequence of Corollary 4, the cardinality of
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X(Fg,PSL(2, p)) is unbounded over any infinite set of primes p, and hence there
exists a prime p ∈ Π where the number of PSL(2, p)–defining subgroups is R ≥ r.

By Lemma 7, stabXφ(π1(Σ),PSL(2, p)) acts on Xφ(π1(Σ),PSL(2, p)) as the
symmetric group, defining a surjective homomorphism

stabXφ(π1(Σ),PSL(2, p)) → Sym(Xφ(π1(Σ),PSL(2, p))) ∼= SR.

Since X(π1(Σ),PSL(2, p)) is a finite set, stabXφ(π1(Σ),PSL(2, p)) < Mod(Σ) has
finite index, completing the proof. �

Proof of Corollary 2. For g,m as in the statement and any r ∈ N, we show that
there is a finite index subgroup of Mod(Σg,m) that surjects a symmetric group on
at least r elements. Since any finite subgroup is isomorphic to a subgroup of some
such symmetric group, this will prove the theorem.

First observe that for any m, g ≥ 0, the kernel of the action of Mod(Σg,m) on
the m punctures of Σg,m is a finite index subgroup Mod′(Σg,m) < Mod(Σg,m).
Furthermore, if 0 ≤ m < m′, there is a surjective homomorphism

Mod′(Σg,m′) → Mod′(Σg,m)

obtained by “filling in” m′ −m of the punctures; see [FM12].
Now, because Mod′(Σ0,4) ∼= F2 and the symmetric group on r elements is 2–

generated, it follows that Mod′(Σ0,4) surjects Sr. From the previous paragraph, it
follows that Mod′(Σ0,m) surjects Sr for all m ≥ 4. Similarly, Mod(Σ1,0) ∼= SL(2,Z),
which has a finite index subgroup isomorphic to F2, and so there is a finite index
subgroup of Mod(Σ1,m) that surjects Sr for all m ≥ 0. As shown in [BH71], there
is a surjective homomorphism Mod(Σ2,0) → Mod(Σ0,6), and consequently, we may
find surjective homomorphisms from finite index subgroups of Mod(Σ2,m) to Sr for
all m ≥ 0. From this and the previous paragraph, it suffices to assume g ≥ 3 and
m = 0. The required surjective homomorphism to a symmetric group in this case
follows from Theorem 1, completing the proof. �

3. Separating handlebody subgroups and residual finiteness

The finite quotients of Mod(Σ) coming from surjective homomorphisms
π1(Σg)→ Fg also allow us to deduce the following result of [LM07]. Recall that a
subgroup K < F is said to be separable in F if for any α ∈ F −K, there exists a
finite index subgroup G < F containing K and not containing α.

Theorem 8 (Leininger-McReynolds). For any g ≥ 2 and homeomorphism to the
boundary of a handlebody, φ : Σ → ∂H, the groups Mod(Hφ) and Mod0(Hφ) are
separable in Mod(Σg).

While the proof of separability of Mod(Hφ) in Mod(Σg) works for all g ≥ 2,
separability of Mod0(Σg) follows from the discussion here only when g ≥ 3.

Proof. Let Σ = Σg, g ≥ 2. For any p, any [h] ∈ stabXφ(π1(Σ),PSL(2, p)), and any
α ∈ Δφ, we have h∗(α) ∈ K for all K ∈ Xφ(π1(Σ),PSL(2, p)). By Lemma 7 this is
true for all [h] ∈ Mod(Hφ).

Now let [f ] ∈ Mod(Σ) − Mod(Hφ), so that f∗(Δφ) 
< Δφ. Let γ ∈ Δφ be an
element such that (the conjugacy class of) f∗(γ) is not in Δφ. (In fact, well-defining
f∗(γ) requires a choice of basepoint preserving representative homeomorphisms for
the mapping class of f , which we make arbitrarily.) Then φ∗(f∗(γ)) ∈ Fg − {1},
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and so by Lemma 5, we can find a prime p and a PSL(2, p)–defining subgroup
N ∈ X(Fg,PSL(2, p)) so that φ∗(f∗(γ)) 
∈ N . Therefore,

f∗(γ) 
∈ φ−1
∗ (N) ∈ Xφ(π1(Σ),PSL(2, p)),

and hence [f ] 
∈ stabXφ(π1(Σ),PSL(2, p)). Since stabXφ(π1(Σ),PSL(2, p)) is a
finite index subgroup containing Mod(Hφ) (by Lemma 7) and not containing [f ],
and since [f ] was arbitrary, it follows that Mod(Hφ) is separable.

Since Mod0(Hφ) < Mod(Hφ) and since Mod(Hφ) is separable, it suffices to con-
sider an element [f ] ∈ Mod(Hφ) \Mod0(Hφ) and produce a finite index subgroup
of Mod(Σ) containing Mod0(Hφ) and not containing [f ]. For all p, Mod0(Hφ) is
contained in the subgroup of stabXφ(π1(Σ),PSL(2, p)) consisting of those mapping
classes that act trivially on Xφ(π1(Σ),PSL(2, p)). Since [f ] 
∈ Mod0(Hφ), Φ∗([f ]) 
=
1 in Out(Fg). For g ≥ 3, Corollary 4 implies that for some p, Φ∗([f ]) acts nontriv-
ially on X(Fg,PSL(2, p)). Therefore, [f ] acts nontrivially on Xφ(π1(Σ),PSL(2, p)),
and so the finite index subgroup G < Mod(Σ) consisting of those mapping classes
preserving the subset Xφ(π1(Σ)PSL(2, p)) and acting trivially on this does not
contain [f ], proving that Mod0(Hφ) is separable. �

Mapping class groups were shown to be residually finite by Grossman as a con-
sequence of the fact that surface groups are conjugacy separable; see [Gro75].

Theorem 9 (Grossman). Mapping class groups are residually finite.

Residual finiteness of Mod(Σg) follows immediately from separability of the han-
dlebody subgroups Mod(Hφ) and the following.

Lemma 10. The intersection of all handlebody subgroups Mod(Hφ) over all home-
omorphisms φ : Σg → ∂H is trivial if g ≥ 3 and isomorphic to Z /2Z if g = 2. The
intersection of handlebody subgroups Mod0(Hφ) is trivial for all g ≥ 2.

Proof. In [Mas86], Masur proved that the limit set of the handlebody subgroup
in the Thurston boundary of Teichmüller space is a nowhere dense subset. The
intersection of all handlebody subgroups is a normal subgroup and so is either
finite or else has limit set equal to the entire Thurston boundary. By Masur’s
result, we must be in the former case, and hence the intersection of handlebody
subgroups is finite. But Mod(Σg) has no nontrivial finite, normal subgroups if
g ≥ 3, while for g = 2, the only nontrivial, finite normal subgroup is the order-two
subgroup generated by the hyperelliptic involution. This proves the first statement.
The second follows from the first and the fact that the hyperelliptic involution of
Σ2 induces a nontrivial automorphism of F2

∼= π1(H), for any homeomorphism
φ : Σ2 → H. �

Proof of Theorem 9 for Mod(Σg), with g ≥ 2. An equivalent formulation of resid-
ual finiteness is that the intersection of all finite index subgroups is trivial. Therefore
Theorem 8 and Lemma 10 immediately imply the result. �
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