
PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 146, Number 12, December 2018, Pages 5295–5310
https://doi.org/10.1090/proc/14224

Article electronically published on September 17, 2018

KATO SQUARE ROOT PROBLEM

WITH UNBOUNDED LEADING COEFFICIENTS

LUIS ESCAURIAZA AND STEVE HOFMANN

(Communicated by Svitlana Mayboroda)

Abstract. We prove the Kato conjecture for elliptic operators, L = −∇ ·
((A+D)∇ ), with A a complex measurable bounded coercive matrix and
D a measurable real-valued skew-symmetric matrix in Rn with entries in

BMO(Rn); i.e., the domain of
√
L is the Sobolev space Ḣ1(Rn) in any di-

mension, with the estimate ‖
√
Lf‖2 � ‖∇f‖2.

1. Introduction

Let A = (aij) be an n×n matrix of complex, L∞ coefficients defined on Rn and
satisfying the ellipticity or accretivity condition

(1.1) λ|ξ|2 ≤ �〈Aξ, ξ〉 ≡ �
∑
i,j

aij(x) ξj ξi , ‖A‖∞ ≤ λ−1,

for ξ ∈ C
n and for some 0 < λ ≤ 1. We consider a divergence form operator

(1.2) Lu ≡ −∇ · (A(x)∇u) .

The accretivity condition (1.1) enables one to define a square root
√
L [22], and

a fundamental issue was to “solve the square root problem”, i.e., to establish the
estimate

(1.3) ‖
√
Lf‖L2(Rn) ≤ N‖∇f‖L2(Rn),

with N depending on n and λ. The latter estimate is connected with the question
of the analyticity of the mapping A →

√
L, which in turn has applications to the

perturbation theory for certain classes of hyperbolic equations [27]. We remark
that (1.3) is equivalent to the opposite inequality for the square root of the adjoint
operator L∗.

In [21, 22] Kato conjectured that an abstract version of (1.3) might hold for
“regularly accretive operators”. A counterexample to this abstract conjecture was
obtained by McIntosh [26], who then reformulated the conjecture in the following
form, bearing in mind that Kato’s interest in the problem had been motivated by
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the special case of elliptic differential operators:
The estimate (1.3) holds for L defined as in (1.2), for any L∞, n× n matrix A

with complex entries for which (1.1) holds.
To establish the validity of this conjecture became known as the Kato Problem

or square root problem. In 1982 it was solved in one dimension [9], where it is
essentially equivalent to the problem of proving the L2 boundedness of the Cauchy
integral operator on Lipschitz curves [23].

For n > 1, a restricted version of the conjecture, also essentially posed by Kato
in [22], was proved by P. Auscher, S. Hofmann, J.L. Lewis, and P. Tchamitchian
in [4]. The restricted version treated the case that A is close in the L∞ norm to
a real symmetric matrix of bounded measurable coefficients. It is this version that
yields the perturbation results for hyperbolic equations alluded to above [27].

Prior to the latter result, the conjecture was proved in higher dimensions when
‖A − I‖L∞(Rn) ≤ ε(n) [8, 13, 14, 20]. [12] gave a different proof using the T (1)

theorem. Sharper bounds for the constant ε(n) on the order of n− 1
2 were obtained

in [20]. In [6] it was proved when ‖A− I‖BMO(Rn) is small.
Later, the validity of the conjecture was established when the heat kernel of the

operator L satisfies the “Gaussian” property, first in 2 dimensions [17] and then in
all dimensions [18]. That is, let G(x, y, t) denote the kernel of the operator e−tL. We
say that L satisfies the Gaussian property if there are positive constants 0 < α ≤ 1
and N such that

(i) |G(x, y, t)| ≤ Nt−
n
2 e−|x−y|2/Nt,

(ii) |G(x+ h, y, t)−G(x, y, t)|+ |Gx, y + h, t)−G(x, y, t)|

≤ N
(
|h|/

√
t
)α

t−
n
2 e−|x−y|2/Nt,

where the latter holds when t > 0 and either |h| ≤ t or |h| ≤ |x− y|/2.
The Gaussian property holds when A is real-valued by results of Aronson [2]

and in some cases for complex A: in two dimensions from [5] and for perturbations
of real operators [3]. Hence, [17], [18] solve the conjecture in the former two-
dimensional cases or the latter n-dimensional cases.

Finally, the conjecture was solved for general complex, bounded, and coercive
matrices A satisfying (1.1) in [7].

The purpose of this note is to show that minor modifications of the reasoning in
[7] also yield the following extension. Let

H1(Rn) := {f ∈ L2(Rn) : ∇f ∈ L2(Rn)}

denote the usual Sobolev space, and let Ḣ1(Rn) denote its homogeneous version;

i.e., Ḣ1 is the closure of C∞
0 (Rn) with respect to the seminorm ‖f‖Ḣ1(Rn) :=

‖∇f‖L2(Rn).

Theorem 1. For any operator

(1.4) L = −∇ · ((A(x) +D(x))∇ )

with A a bounded complex-valued coercive matrix satisfying (1.1) and D a real-
valued skew-symmetric matrix in Rn with entries in BMO(Rn) satisfying (1.5), the

domain of
√
L contains H1(Rn), and (1.3) holds over Ḣ1(Rn), with N = N(λ, n).
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We remark in passing that the Gaussian property has been shown to hold with
α = α(λ, n) and N = N(λ, n) when

Lu ≡ −∇ · ((A(x) +D(x))∇u) ,

with A a real-valued, bounded symmetric and coercive matrix satisfying (1.1) and
D = (dij(x)) a real-valued skew-symmetric BMO(Rn) matrix [28, 31] with

(1.5) ‖D‖BMO(Rn) ≤ λ−1.

The arguments of [18] could be modified to treat this restricted case. On the other
hand, as in [7], we do not require the Gaussian property in the proof of Theorem 1
in the present paper.

We recall that a function β : Rn −→ C is in BMO(Rn) or has bounded mean
oscillation [19] when it is locally integrable and

‖β‖BMO(Rn) = sup
Q⊂Rn

 
Q

|β −mQ(β)| dx < +∞,

where Q ranges over all cubes in Rn with sides parallel to the coordinate axis and

mQ(β) =

 
Q

β dx.

If one defines other norms by

‖β‖BMO(Rn)p = sup
Q⊂Rn

( 
Q

|β −mQ(β)|p dx
) 1

p

, 1 < p < ∞,

the John-Nirenberg inequality [19] implies that all the BMO(Rn)p-norms are equiv-
alent when 1 ≤ p < ∞. Finally, BMO(Rn) is the dual of H1

at(R
n), the real Hardy

space in R
n, where f in L1(Rn) is in H1

at(R
n) when

sup
ε>0

|θε ∗ f |

is in L1(Rn), where θε = ε−nθ(x/ε) and θ is any smooth non-negative compactly
supported mollifier with integral equal to 1 [15]. In particular, when β is in
BMO(Rn) and f is in H1

at(R
n), the principal value of the integral of βf is well

defined [24] and ∣∣∣∣
ˆ
Rn

βf dx

∣∣∣∣ ≤ N(n)‖β‖BMO(Rn)‖f‖H1
at(R

n),

with

‖f‖H1
at(R

n) = ‖ sup
ε>0

|θε ∗ f |‖L1(Rn).

Following [28], when

(1.6) L = −∇ · (A∇ )− b · ∇,

with A a complex-valued bounded matrix verifying (1.1) and b a real-valued
divergence-free vector field with

(1.7) sup
x∈Rn, r>0

r

 
Br(x)

|b| dx < ∞,

the matrix

D = Δ−1(∇b−∇b�)
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is a skew-symmetric and real-valued matrix with

‖D‖BMO(Rn) ≤ N(n) sup
x∈Rn, r>0

r

 
Br(x)

|b| dx,

and L can be written in the form (1.4). Thus, according to Theorem 1, the domain
of the square root of the accretive operator (1.6) contains H1(Rn) when A is as
above, b is real-valued, and (1.7) holds.

The proof of Theorem 1 requires simple modifications to the original reasoning in
[7] but most importantly the following two compensated compactness-type results.

Proposition 1. When f, g : Rn −→ R are in H1(Rn) and i, j ∈ {1, . . . , n}, the
functions ∂if∂jg − ∂jf∂ig and f∂if are in H1

at(R
n) and there is N = N(n) such

that

(1.8) ‖∂if∂jg − ∂jf∂ig‖H1
at(R

n) ≤ N‖∇f‖L2(Rn)‖∇g‖L2(Rn)

and

(1.9) ‖f∂if‖H1
at(R

n) ≤ N‖f‖L2(Rn)‖∇f‖L2(Rn).

The reader can find the proofs of (1.8) and (1.9) in [10] and [31] respectively.
In the next section we explain the minor modifications one must make to the

reasoning in the proof of Conjecture 1.4 in [7] to derive its extension in Theorem 1.
Throughout the next pages N denotes a constant which depends at most on λ and
n, Br is an open ball in Rn of radius r > 0, Q is a cube in Rn with sides parallel
to the coordinate axis, xQ is its center, and δ(Q) is its side length.

2. Proof of Theorem 1

Setting

〈f , g〉 =
ˆ
Rn

f(x)g(x) dx, for f, g ∈ L2(Rn),

it follows from Hölder’s inequality, (1.1), (1.5), the identity

(2.1)

ˆ
Rn

D(x)∇u · ∇v dx =
1

2

ˆ
Rn

dij(x) (∂iu∂jv − ∂ju∂iv) dx,

(1.8), and the fact that

�D(x)ξ · ξ = 0, when x ∈ R
n and ξ ∈ C

n,

that the sesquilinear form

B(u, v) =
ˆ
Rn

(A(x) +D(x))∇u · ∇v dx,

associated to the unbounded operator L in (1.4), with domain

D(L) = {u ∈ H1(Rn) : Lu ∈ L2(Rn) },
and by the relation

〈Lu, v〉 = B(u, v), when u ∈ D(L) and v ∈ H1(Rn),

is bounded and coercive on H1(Rn) with

|B(u, v)| ≤ N‖∇u‖L2(Rn)‖∇v‖L2(Rn)

and

�B(u, u) ≥ λ

ˆ
Rn

|∇u|2 dx, when u ∈ H1(Rn),
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when the matrices A and D satisfy the conditions in Theorem 1. L is an accretive
unbounded operator,

�〈Lu, u〉 = �B(u, u) ≥ 0, when u ∈ D(L);

L is also m-accretive [21, p. 279], and the operators

(2.2) (1 + t2L)−1, t∇(1 + t2L)−1, (1 + t2L)−1t∇·, and t2∇(1 + t2L)−1∇·
are uniformly L2(Rn)-bounded with bounds depending on n and λ for all t > 0,
where

u =
(
1 + t2L

)−1
f and w =

(
1 + t2L

)−1
t∇ · f

are the unique Lax-Milgram weak solutions in H1(Rn) satisfying respectively

(2.3)

ˆ
Rn

uv + t2 (A+D)∇u · ∇v dx =

ˆ
Rn

f v dx

and

(2.4)

ˆ
Rn

wv + t2 (A+D)∇w · ∇v dx = −t

ˆ
Rn

f · ∇v dx,

for all v in C∞
0 (Rn), when f and f are in L2(Rn). Similar bounds hold when L is

replaced above by the adjoint of L,

L∗ = −∇ · ((A∗ −D)∇) ,

where A∗ denotes the transpose conjugate matrix of A.
Following Kato [21, p. 281], L has a unique m-accretive square root

√
L given

by
√
Lf =

1

π

ˆ +∞

0

λ− 1
2 (λ+ L)−1Lf dλ, when f ∈ D(L).

The identities

(λ+ L)−k−1 = −1

k

d

dλ
(λ+ L)−k, λ > 0,

for k = 1, 2, integration by parts, and the change of variables λ = 1/t2, show that

√
Lf =

8

π

ˆ +∞

0

(1 + t2L)−3t3L2f
dt

t
, when f ∈ D(L2) = (1 + L)−1D(L),

and as in [7], we use the latter resolution formula for
√
L to prove Theorem 1.

As in [7], Theorem 1 follows once (1.3) is derived for f in a dense subspace of
H1(Rn), as D(L2) (here, L2 = L ◦ L), because then (2.7), (2.12), and the closedness

of
√
L as an unbounded operator over L2(Rn) show that H1(Rn) is contained in

the domain of
√
L and (1.3) holds for f in H1(Rn). Finally, H1(Rn) is dense in

Ḣ1(Rn) and
√
L can be uniquely extended by density to Ḣ1(Rn).

We have

|〈
√
Lf, g〉| =

∣∣∣∣
ˆ +∞

0

〈
(
1 + t2L

)−1
tLf ,

(
1 + t2L∗)−2

t2L∗g〉dt
t

∣∣∣∣
≤

(ˆ +∞

0

‖
(
1 + t2L

)−1
tLf‖2L2(Rn)

dt

t

) 1
2

×
(ˆ +∞

0

‖
(
1 + t2L∗)−2

t2L∗g‖2L2(Rn)

dt

t

) 1
2
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and

(2.5)

(ˆ +∞

0

‖
(
1 + t2L∗)−2

t2L∗g‖2L2(Rn)

dt

t

) 1
2

≤ N‖g‖L2(Rn).

To verify the latter inequality, define

St =
(
1 + t2L

)−2
t2L =

(
1 + t2L

)−1 −
(
1 + t2L

)−2
.

By duality ˆ +∞

0

‖
(
1 + t2L∗)−2

t2L∗g‖2L2(Rn)

dt

t
= 〈

ˆ +∞

0

StS∗
t g

dt

t
, g〉

≤ ‖
ˆ +∞

0

StS∗
t g

dt

t
‖L2(Rn)‖g‖L2(Rn),

and because the operators St are uniformly bounded in B(L2(Rn)) and

(2.6) ‖S∗
t Ss‖B(L2(Rn)) ≤ N min {t/s, s/t}, when s, t > 0,

Cotlar’s Lemma for integrals [11, 29] and (2.6) imply that

‖
ˆ +∞

0

StS∗
t g

dt

t
‖L2(Rn) ≤ N‖g‖L2(Rn),

which gives (2.5). Thus,

(2.7) ‖
√
Lf‖L2(Rn) ≤ N

(ˆ +∞

0

‖
(
1 + t2L

)−1
tLf‖2L2(Rn)

dt

t

) 1
2

,

provided that (2.6) holds. Write then for t, s > 0,

〈S∗
t Ssf, g〉

= 〈
(
1 + s2L

)−2
s2Lf,

(
1 + t2L

)−2
t2Lg〉

= 〈s2L
(
1 + s2L

)−2
f,

(
1 + t2L

)−1
g −

(
1 + t2L

)−2
g〉

= −s

t
〈(A+D) s∇

(
1 + s2L

)−2
f, t∇

(
1 + t2L

)−1
g − t∇ ·

(
1 + t2L

)−2
g〉

= − t

s
〈s∇

(
1 + s2L

)−1
f − s∇ ·

(
1 + s2L

)−2
f, (A+D) t∇

(
1 + t2L

)−2
g〉

and use Hölder’s inequality, (2.1), (2.2), and (1.8) to derive (2.6) from the previous
identities.

The next goal is to show that the operator

(2.8) Tt =
(
1 + t2L

)−1
t2L = I −

(
1 + t2L

)−1

has Gaffney bounds and a well defined action over L∞(Rn) and the space of Lips-
chitz functions over Rn. To show it we prove first the following lemma.

Lemma 1. There are θ = θ(λ, n) and N such that the inequalities

‖ex·ξ/t
(
1 + t2L

)−1
f‖L2(Rn) + ‖ex·ξ/tt∇

(
1 + t2L

)−1
f‖L2(Rn) ≤ N‖ex·ξ/tf‖L2(Rn),

‖ex·ξ/t
(
1 + t2L

)−1
t∇ · f‖L2(Rn) + ‖ex·ξ/tt2∇

(
1 + t2L

)−1 ∇ · f‖L2(Rn)

≤ N‖ex·ξ/tf‖L2(Rn)

hold when ξ is in Rn and |ξ| ≤ θ.
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Proof. We first prove the lemma when the domain of L is replaced by

D(L) = {f ∈ H1
0 (Ω) : Lf ∈ L2(Ω)},

where Ω is a bounded domain in Rn and L2(Rn) is replaced by L2(Ω) in Lemma

1. In that case, when f is in L2(Ω), u =
(
1 + t2L

)−1
f is the unique Lax-Milgram

weak solution in H1
0 (Ω), which satisfies

(2.9)

ˆ
Ω

uv + t2 (A+D)∇u · ∇v dx =

ˆ
Ω

f v dx,

for all v in H1
0 (Ω). Then take v = e2x·ξ/tu in (2.9) to find thatˆ

Ω

e2x·ξ/t
[
|u|2 + t2 (A+D)∇u · (∇u+ 2(ξ/t)u)

]
dx =

ˆ
Ω

e2x·ξ/tfu dx.

Taking real parts, together with the fact that �Dη · η = 0, for all η ∈ C
n, we get

‖ex·ξ/tu‖2L2(Ω) + λ‖ex·ξ/tt∇u‖2L2(Ω) ≤ ‖ex·ξ/tf‖L2(Ω)‖ex·ξ/tu‖L2(Ω)

+ λ−1|ξ|‖ex·ξ/tt∇u‖L2(Ω)‖ex·ξ/tu‖L2(Ω) − t

ˆ
Ω

D∇
(
|ex·ξ/tu|2

)
· ξ dx.

According to (1.9) and because ex·ξ/tu is in H1
0 (Ω) ⊂ H1(Rn), the absolute value

of the last integral above is bounded by a multiple of

λ−1|ξ|‖ex·ξ/tu‖L2(Ω)‖ex·ξ/tt∇u‖L2(Ω) + |ξ|2‖ex·ξ/tu‖2L2(Ω),

and the inequality

(2.10) ‖ex·ξ/tu‖L2(Ω) + ‖ex·ξ/tt∇u‖L2(Ω) ≤ N‖ex·ξ/tf‖L2(Ω)

follows when |ξ| ≤ θ, ξ is in Rn, and θ is sufficiently small.
For f in C∞

0 (Rn) with the support of f contained in BR, let uR denote the Lax-
Milgram weak solution to (2.9) when Ω = BR. Because D∇ϕ is in L2(Rn), when
ϕ is in C∞

0 (Rn) and the bounds that we have for uR and ∇uR are independent of
R ≥ 1, we can derive that uR converges to u in L2

loc(R
n) and ∇uR converges weakly

to ∇u in L2
loc(R

n), where now u =
(
1 + t2L

)−1
f is as in Lemma 1. The first part

of the lemma now follows from (2.10) and the local weak convergences of ex·ξ/tuR

and ex·ξ/t∇uR to ex·ξ/tu and ex·ξ/t∇u when R tends to infinity.
The second part of the lemma follows after replacing (2.9) by (2.4) and taking

v = e2x·ξ/tw. �

Lemma 2. There is N such that the following inequalities hold for all cubes Q in
R

n with side length δ(Q) and t > 0:

‖
(
1 + t2L

)−1
f‖L2(Q) + ‖t∇

(
1 + t2L

)−1
f‖L2(Q) ≤ Ne−2kδ(Q)/Nt‖f‖L2(Rn),

‖
(
1 + t2L

)−1
t∇· f‖L2(Q)+ ‖t2∇

(
1 + t2L

)−1 ∇· f‖L2(Q) ≤ Ne−2kδ(Q)/Nt‖f‖L2(Rn),

when the supports of f and f are contained in 2k+1Q \ 2kQ and k ≥ 1.

Proof. Without loss of generality we may assume that the cube Q is centered at
the origin and 2kQ = {x ∈ Rn : ‖x‖∞ ≤ 2k−1δ(Q)}, when k ≥ 1. Assume then
that f is supported in 2k+1Q \ 2kQ and write Rn \ {0} as the union of the sets,⋃n

i=1 Ai ∪Bi, where

Ai = {x ∈ R
n : ‖x‖∞ = xi} and Bi = {x ∈ R

n : ‖x‖∞ = −xi}, i = 1, . . . , n.
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Then,

(
1 + t2L

)−1
f =

n∑
i=1

(
1 + t2L

)−1
(fχAi

) +
(
1 + t2L

)−1
(fχBi

),

and we show that the first inequality in the lemma holds for each of these parts

of
(
1 + t2L

)−1
f . To get it for

(
1 + t2L

)−1
(fχA1

), apply Lemma 1 to fχA1
with

ξ = −θe1, e1 = (1, 0, . . . , 0), and observe that e−θx1/t ≥ e−θδ(Q)/2t inside Q and

e−θx1/t ≤ e−θ2kδ(Q)/2t inside A1 ∩ 2k+1Q \ 2kQ.
The other inequalities in Lemma 2 follow in the same way from Lemma 1. �

For f in L∞(Rn), define(
1 + t2L

)−1
f = lim

R→+∞

(
1 + t2L

)−1
(fχBR(x0)),

where x0 is any point in Rn and the limit is taken in the L2
loc(R

n)-sense. The limit
is well defined due to the Gaffney bounds in Lemma 2, for if x1 is any other point
in Rn, the symmetric difference between BR(x0) and BR(x1) is contained in an
annulus B2R \BR

2
for R sufficiently large and

‖
(
1 + t2L

)−1
(fχBR(x0))−

(
1 + t2L

)−1
(fχBR(x1))‖L2(BR

4
)

≤ NR
n
2 e−R/Nt‖f‖L∞(Rn).

Also, after writing

χBR2
\BR1

= χBR2
\B

2l+1R1
+

l∑
i=0

χB2i+1R1
\B2iR1

when 2R < R1 < 2l+1R1 < R2 ≤ 2l+2R1, it follows from Lemma 2 that

‖
(
1 + t2L

)−1
(fχBR2

)−
(
1 + t2L

)−1
(fχBR1

)‖L2(BR) ≤ Nt
n
2 +1R−1

1 ‖f‖L∞(Rn),

which shows that
(
1 + t2L

)−1
(fχBR

) is a Cauchy sequence in L2
loc(R

n) when f is
in L∞(Rn). Also, the Gaffney control that we have in Lemma 2 over the operator

t∇
(
1 + t2L

)−1

shows with similar reasoning that for f in L∞(Rn), u =
(
1 + t2L

)−1
f is a weak

H1
loc(R

n) solution over Rn to u+ t2Lu = f .

In particular,
(
1 + t2L

)−1
1 = 1 and ∇

(
1 + t2L

)−1
1 = 0 in the above sense,

because if ηR(x) = η(x/R), with η in C∞
0 (Rn), η = 1 in B1, and η = 0 outside B2,

then uR =
(
1 + t2L

)−1
(ηR) satisfies

uR − ηR + t2L(uR − ηR) = −t2LηR.

At the same time, the skew-symmetry of D implies that in the sense of distributions

−t2LηR = t2∇ · ((A+D−mB2R
(D))∇ηR) , mB2R

(D) =

 
B2R

D dx.
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Then, the second inequality in Lemma 2 gives

‖uR − 1‖L2(BR
2
) + ‖t∇uR‖L2(BR

2
)

≤ Nte−R/Nt‖A∇ηR + (D−mB2R
(D))∇ηR‖L2(B2R)

≤ NtR
n
2 −1e−R/Nt,

which tends to zero as R tends to +∞. The latter shows that the L2(Rn)-uniformly
bounded operators Tt defined by (2.8) verify Gaffney bounds, map L∞(Rn) into
L2
loc(R

n), and Tt(1) = 0, for t > 0.
For a Lipschitz function f in Rn, define in a similar manner

Tt(f) = lim
R→+∞

Tt
(
(f − f(x0))χBR(x1)

)
,

where x0 and x1 are any points in Rn. The limit is measured in the L2
loc(R

n)-sense,
and the definition is again independent of the choices of x0 and x1. Clearly, for f
Lipschitz, Tt(f) is a weak H1

loc(R
n) solution over Rn to

Tt(f) + t2LTt(f) = t2Lf.

This follows from the Gaffney bounds verified by the operators Tt and the following
lemma.

Lemma 3. Let f be a Lipschitz function in Rn and let Q be a cube in Rn with
0 < t ≤ δ(Q). Then,

‖Tt(f)‖L2(Q) ≤ Nt|Q| 12 ‖∇f‖L∞(Rn)

and
‖∇Tt(f)‖L2(Q) ≤ N |Q| 12 ‖∇f‖L∞(Rn).

Proof. Let xQ denote the center of the cube Q. Write

Tt(f) = lim
R→+∞

Tt
(
(f − f(xQ))χBR(xQ)

)

= Tt
(
(f − f(xQ)) η0

)
+

+∞∑
k=0

Tt
(
(f − f(xQ)) (ηk+1 − ηk)

)
,

where η ∈ C∞
0 (Rn) is equal to 1 in 2Q − xQ, 0 outside 3Q − xQ, and ηk(x) =

η(x− xQ/2
k), k ≥ 0. Then, the Gaffney bounds in Lemma 2 show that

(2.11)

‖Tt((f − f(xQ)) (ηk+1 − ηk))‖L2(Q) + ‖t∇Tt((f − f(xQ)) (ηk+1 − ηk))‖L2(Q)

≤ N2−k‖∇f‖L∞(Rn)t|Q|1/2,
when k ≥ 0. Next, u = Tt ((f − f(xQ)) η0) is a weak H1(Rn) solution to

u+ t2Lu = −t2∇ · (A+D)∇ ((f − f(xQ)) η0) ,

and recalling that the distribution

∇ · (D∇ ((f − f(xQ)) η0))

is the same as
∇ · ((D−mQ(D))∇ ((f − f(xQ)) η0)) ,

we find that

u = −
(
1 + t2L

)−1
t2∇ · [(A+ (D−mQ(D))∇ ((f − f(xQ)) η0))] .
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Then, the uniform boundedness of the last two operators in (2.2) gives

‖u‖L2(Q) + ‖t∇u‖L2(Q) ≤ Nt|Q| 12 (1 + ‖D‖BMO) ‖∇ ((f − f(xQ)) η0) ‖L∞(4Q)

≤ Nt|Q| 12 (1 + ‖D‖BMO) ‖∇f‖L∞(Rn),

and the lemma follows after adding up (2.11) and the last inequality. �

Next, we recall the following result in [1, Lemma 3.9].

Lemma 4. Let {Tt : t > 0} be a family of bounded operators on L2(Rn) satisfying
for some N > 0:

(1) supt>0 ‖Tt‖B(L2(Rn)) ≤ N .
(2) Tt verifies Gaffney bounds; i.e., when Q is a cube in Rn and k ≥ 1,

‖Tt
(
fχ2k+1Q\2kQ

)
‖L2(Q) ≤ Ne−2kδ(Q)/Nt‖fχ2k+1Q\2kQ‖L2(Rn).

(3) Tt(1) ≡ 0 in L2
loc(R

n).

Then, (ˆ
R

n+1
+

|1
t
Tt(f)|2

dxdt

t

) 1
2

≤ N

[
1 + ‖1

t
Tt(Φ)‖C

]
‖∇f‖L2(Rn),

for all f in H1(Rn), where

‖1
t
Tt(Φ)‖C = sup

Q⊂Rn

(
1

|Q|

ˆ
RQ

|1
t
Tt(Φ)|2

dxdt

t

) 1
2

,

Φ is the identity map of Rn, and RQ is the Carleson box Q× (0, δ(Q)).

Hence, as in [7], Lemma 4 implies that

(2.12)

(ˆ +∞

0

‖
(
1 + t2L

)−1
tLf‖2L2(Rn)

dt

t

) 1
2

≤ N‖∇f‖L2(Rn)

after one shows with Tt as in (2.8) that the measure

|1
t
Tt(Φ)|2

dxdt

t

is a Carleson measure with

(2.13) ‖1
t
Tt(Φ)‖C ≤ N,

and (1.3) for f in D(L2) follows from (2.7) and (2.12).
To obtain (2.13), it suffices to adapt the construction of [18] to verify a variant

of the T (b) theorem for square roots [6]: for a fixed cube Q in Rn, 0 < ε < 1, and
ξ a unit vector in C

n, define the scalar-valued function

(2.14) f ε
Q,ξ = ΦQ · ξ − Tt (ΦQ · ξ) ,

with ΦQ(x) = x − xQ and t = εδ(Q). Then, if follows from Lemma 3 with Q
replaced by 10Q, t = εδ(Q), and f = ΦQ · ξ that

(2.15)

( 
10Q

|f ε
Q,ξ − ΦQ · ξ|2 dx

) 1
2

≤ Nεδ(Q),
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(2.16)

( 
10Q

|∇f ε
Q,ξ − ξ|2 dx

) 1
2

≤ N.

Also f ε
Q,ξ is a weak H1

loc(R
n) solution to f ε

Q,ξ + t2Lf ε
Q,ξ = ΦQ · ξ over Rn, with

t = εδ(Q) and

(2.17)

( 
10Q

|Lf ε
Q,ξ|2 dx

) 1
2

≤ N/ (εδ(Q)) .

The reasoning in [7, Lemma 5.4] shows that given functions f ε
Q,ξ in H1

loc(R
n)

verifying (2.15) and (2.16) for some N > 0, there are 0 < ε ≤ 1, ε = ε(N,n), and a
finite set W of unit vectors in Cn, whose cardinality depends only on ε and n, such
that the inequality

(2.18) ‖Ψ‖C ≤ N
∑
ξ∈W

sup
Q⊂Rn

(
1

|Q|

ˆ
RQ

|Ψ · SQ
t (∇f ε

Q,ξ)|2
dxdt

t

) 1
2

holds for all measurable functions Ψ : Rn+1 −→ Cn in L2
loc(R

n+1
+ ), where for each

Q cube in Rn, SQ
t denotes the dyadic averaging operator associated to the dyadic

mesh generated by Q; i.e.,

SQ
t (h)(x) =

 
Q′

h(y) dy,

for x in the dyadic cube Q′ with 1
2δ(Q

′) < t ≤ δ(Q′). In fact, the proof of (2.18) in
[7, Lemma 5.4] uses the compactness of the unit sphere in Cn, properties of the dis-
tance function in Cn, Hölder’s inequality, the boundedness of the Hardy-Littlewood
maximal function in L2(Rn), a suitable stopping time argument independent of Ψ,
and the interpolation inequality in [7, Lemma 5.15]. Thus, its proof is independent
of the choice of Ψ, and (2.18) holds with Ψ = 1

t Tt(Φ) when L is as in Theorem 1
and for the choice of functions f ε

Q,ξ defined in (2.14).

Then, (2.13) follows from (2.18) with Ψ = 1
t Tt(Φ) and Lemma 5 below, which

adapts [7, Lemma 5.5] to the more general hypothesis on the coefficients matrix of
L in Theorem 1.

Lemma 5. Let ε = ε(N,n) be the choice of ε in (2.18). Then, there is N > 0 such
that (

1

|Q|

ˆ
RQ

|1
t
Tt(Φ) · SQ

t (∇f ε
Q,ξ)|2

dxdt

t

) 1
2

≤ N,

for all cubes Q in Rn and ξ a unit vector in Cn.

Proof. Fix Q, ξ in Cn with |ξ| = 1 and make ε = ε(N,n). Let χ be in C∞
0 (4Q)

with χ = 1 in 2Q, χ = 0 outside 3Q, and

‖χ‖∞ + δ(Q)‖∇X‖∞ ≤ N.

To simplify the notation set f = f ε
Q,ξ and St = SQ

t . Then,

‖1
t
Tt(Φ) · St(∇f)‖L2(RQ,dxdt/t) = ‖1

t
Tt(Φ) · St(∇ (χf))‖L2(RQ,dxdt/t)

because ∇(χf) = ∇f over 2Q and St(∇f) only reads information about ∇f inside
Q to calculate its values at points (x, t) in RQ. Next, let Pt denote the convolution
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with an even smooth mollifier, θt(x) = t−nθ(x/t), θ with integral 1 and supported
in B1. We have

‖1
t
Tt(Φ) · St(∇ (χf))‖L2(RQ,dxdt/t)

≤ ‖1
t
Tt(Φ) · (St − P 2

t ) (∇ (χf)) ‖L2(Rn+1
+ ,dxdt/t)

+ ‖1
t

(
Tt(Φ) · ∇P 2

t − Tt
)
(χf) ‖L2(Rn+1

+ ,dxdt/t) + ‖1
t
Tt(χf)‖L2(RQ,dxdt/t)

= I + II + III.

Then, I and II in the right hand side above are handled exactly as their analogues
in [7, Lemma 5.5]. In particular, the only information about f that one needs to

bound I and II by N
√
|Q| is that (2.15) and (2.16) imply the bound

(2.19)

( 
5Q

|∇ (χf) |2 dx

) 1
2

≤ N,

and it suffices to apply the same harmonic analysis techniques, which allow us to

handle the operators 1
t Tt(Φ) · (S

Q
t − P 2

t ) and 1
t

(
Tt(Φ) · ∇P 2

t − Tt
)
in [7, Lemma

5.5]. In particular, for I use that St is a projection operator; i.e., S2
t = St,

‖1
t
Tt(Φ) · (St − P 2

t ) (∇ (χf)) ‖L2(Rn+1
+ ,dxdt/t)

= ‖1
t
Tt(Φ) · (St + Pt)(St − Pt) (∇(χf)) ‖L2(Rn+1

+ ,dxdt/t)

and that 1
t Tt(Φ) · (St+Pt) is a bounded operator on L2(Rn) because the pointwise

bounds of the kernel of St + Pt and duality show that

‖1
t
Tt(Φ)(St + Pt)‖B(L2(Rn)) ≤ N‖PNt

(
|1
t
Tt(Φ)|2PNt

)
‖

1
2

B(L2(Rn)).

The first inequality in Lemma 3 implies that( 
B2Nt(x)

|1
t
Tt(Φ)|2 dx

) 1
2

≤ N,

which shows that the kernel of PNt

(
| 1t Tt(Φ)|2PNt

)
is bounded by Nt−nχ|x−y|≤4Nt.

Finally, the proof of the inequality(ˆ
R

n+1
+

|(St − Pt)(h)|2
dxdt

t

)
≤ N‖h‖L2(Rn), for h ∈ L2(Rn),

is explained in [20] or [6, pp. 168 and 172-173]. The bound for II follows from
(2.19), and Lemma 4 applied to the family of operators Tt(Φ) ·∇P 2

t −Tt, which are
uniformly bounded in L2(Rn), verify Gaffney bounds and map 1 and Φ to zero.

In order to bound III, the presence of the BMO(Rn) matrix D obliges us to
use some additional information about the gradient of f = f ε

Q.ξ, in particular, local

higher integrability; i.e. there is p = p(λ, n) > 0 independent of δ(Q) and ξ such
that

(2.20)

( 
5Q

|∇f ε
Q,ξ|p dx

) 1
p

≤ N.
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Once the latter is known, the skew-symmetry of D implies that as a distribution

L (χf) = χLf −∇ · (f (A+D−m4Q(D))∇χ)− (A+D−m4Q(D))∇f · ∇χ

and

1

t
Tt(χf) =

(
1 + t2L

)−1
tL (χf)

= t
(
1 + t2L

)−1
(χLf)

−
(
1 + t2L

)−1
t [∇ · (f (A+D−m4Q(D))∇χ) + (A+D−m4Q(D))∇f · ∇χ] .

(2.21)

Then, (2.2) and (2.17) give

(2.22) ‖t
(
1 + t2L

)−1
(χLf) ‖L2(Q) ≤ Ntδ(Q)−1

√
|Q|,

while the Gaffney bounds in Lemma 2, (1.1), (1.5), (2.20), (2.15), (2.16), Hölder’s
inequality, and the Poincaré-Sobolev inequality over 4Q imply that for 0 < t ≤ δ(Q),

N−1‖
(
1 + t2L

)−1
t∇ · (f (A+D−m4Q(D))∇χ) ‖L2(Q)

+N−1‖
(
1 + t2L

)−1
t [(A+D−m4Q(D))∇f · ∇χ] ‖L2(Q)

≤ e−δ(Q)/Ntδ(Q)−1
[
‖ (A+D−m4Q(D)) (f −m4Q(f)) ‖L2(4Q) + |m4Q(f)|

√
|Q|

]
+ e−δ(Q)/Nttδ(Q)−1‖ (A+D−m4Q(D))∇f‖L2(4Q) ≤ Ne−δ(Q)/2Nt

√
|Q|.

(2.23)

Finally, (2.21), (2.22), and (2.23) show that III is also bounded by N
√
|Q|, which

proves Lemma 5.
It only remains to show that (2.20) holds, but this follows from (2.15) and (2.16)

and standard higher integrability methods [16, 28, 30] because f = f ε
Q,ξ is a weak

H1
loc(R

n) solution to f + t2Lf = ΦQ · ξ over Rn, with t = εδ(Q). We include the
details for the reader’s convenience.

When B2r is any ball, multiply the equation

−t2∇ · ((A+D)∇f) = ΦQ · ξ − f

by
(
f −mB2r

(f)
)
η2, with η = 1 over Br, η in C∞

0 (B2r). This yields

ˆ
t2A∇f · ∇fη2 + 2t2 (A+D)∇f · ∇η

(
f −mB2r

(f)
)
η dx

=

ˆ
(ΦQ · ξ − f)

(
f −mB2r

(f)
)
η2 dx.

Taking real parts, dividing by t2, and using the cancellations provided by the skew-
symmetry of the matrix mB2r

(D), one gets

ˆ
|∇f |2η2 dx ≤ Nr−2

ˆ
B2r

(
1 + |D−mB2r

(D)|2
)
|f −mB2r

(f)|2 dx

+

(ˆ
B2r

| (ΦQ · ξ − f) t−2| 2n
n+2 dx

)n+2
n

.
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Next, by Hölder’s inequality and a Sobolev-Poincaré inequality

ˆ
B2r

|D−mB2r
(D)|2|f −mB2r

(f)|2 dx

≤
(ˆ

B2r

|D−mB2r
(D)|2n dx

) 1
n

(ˆ
B2r

|f −mB2r
(f)| 2n

n−1 dx

)n−1
n

≤ Nr

(ˆ
B2r

|∇f | 2n
n+1 dx

)n+1
n

.

Hence, recalling that t = εδ(Q), one gets

(2.24)

( 
Br

|∇f |2 dx
) 1

2

≤ N

( 
B2r

|∇f | 2n
n+1 dx

)n+1
2n

+N

( 
B2r

| (ΦQ · ξ − f) δ(Q)−1| 2n
n+2 dx

)n+2
2n

,

when B2r is any ball contained in 10Q. From [30] and (2.24), there is some p =
p(λ, n) > 2 such that

(2.25)

( 
5Q

|∇f |p dx
) 1

p

≤ N

( 
10Q

|∇f |2 dx
) 1

2

+Nδ(Q)−1

( 
10Q

|ΦQ · ξ − f |p dx
) 1

p

.

Finally, we may assume that 2 < p < 2n
n−2 , and the interpolation of (2.15) and

(2.16) shows that the second term in the right hand of (2.25) is bounded by N ,
while (2.16) implies that the same holds with the first term. �
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[12] Guy David and Jean-Lin Journé, A boundedness criterion for generalized Calderón-Zygmund
operators, Ann. of Math. (2) 120 (1984), no. 2, 371–397, DOI 10.2307/2006946. MR763911

[13] Eugene B. Fabes, David S. Jerison, and Carlos E. Kenig, Multilinear square functions and
partial differential equations, Amer. J. Math. 107 (1985), no. 6, 1325–1368 (1986), DOI
10.2307/2374409. MR815765

[14] Eugene B. Fabes, David S. Jerison, and Carlos E. Kenig, Necessary and sufficient conditions
for absolute continuity of elliptic-harmonic measure, Ann. of Math. (2) 119 (1984), no. 1,
121–141, DOI 10.2307/2006966. MR736563

[15] C. Fefferman and E. M. Stein, Hp spaces of several variables, Acta Math. 129 (1972), no. 3-4,
137–193, DOI 10.1007/BF02392215. MR0447953

[16] F. W. Gehring, The Lp-integrability of the partial derivatives of a quasiconformal mapping,
Acta Math. 130 (1973), 265–277, DOI 10.1007/BF02392268. MR0402038

[17] Steve Hofmann and Alan McIntosh, The solution of the Kato problem in two dimensions,
Proceedings of the 6th International Conference on Harmonic Analysis and Partial Differential
Equations (El Escorial, 2000), Publ. Mat. Vol. Extra (2002), 143–160, DOI 10.5565/PUB-
LMAT Esco02 06. MR1964818

[18] Steve Hofmann, Michael Lacey, and Alan McIntosh, The solution of the Kato problem for
divergence form elliptic operators with Gaussian heat kernel bounds, Ann. of Math. (2) 156
(2002), no. 2, 623–631, DOI 10.2307/3597200. MR1933725

[19] F. John and L. Nirenberg, On functions of bounded mean oscillation, Comm. Pure Appl.
Math. 14 (1961), 415–426, DOI 10.1002/cpa.3160140317. MR0131498
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