Kato square root problem with unbounded leading coefficients
HTML articles powered by AMS MathViewer
- by Luis Escauriaza and Steve Hofmann
- Proc. Amer. Math. Soc. 146 (2018), 5295-5310
- DOI: https://doi.org/10.1090/proc/14224
- Published electronically: September 17, 2018
- PDF | Request permission
Abstract:
We prove the Kato conjecture for elliptic operators, $L=-\nabla \cdot \left ((\mathbf A+\mathbf D)\nabla \ \right )$, with $\mathbf A$ a complex measurable bounded coercive matrix and $\mathbf D$ a measurable real-valued skew-symmetric matrix in $\mathbb {R}^n$ with entries in $BMO(\mathbb {R}^n)$; i.e., the domain of $\sqrt {L}$ is the Sobolev space $\dot H^1(\mathbb {R}^n)$ in any dimension, with the estimate $\|\sqrt {L} f\|_2 \lesssim \| \nabla f\|_2$.References
- M. Angeles Alfonseca, Pascal Auscher, Andreas Axelsson, Steve Hofmann, and Seick Kim, Analyticity of layer potentials and $L^2$ solvability of boundary value problems for divergence form elliptic equations with complex $L^\infty$ coefficients, Adv. Math. 226 (2011), no. 5, 4533–4606. MR 2770458, DOI 10.1016/j.aim.2010.12.014
- D. G. Aronson, Bounds for the fundamental solution of a parabolic equation, Bull. Amer. Math. Soc. 73 (1967), 890–896. MR 217444, DOI 10.1090/S0002-9904-1967-11830-5
- Pascal Auscher, Regularity theorems and heat kernel for elliptic operators, J. London Math. Soc. (2) 54 (1996), no. 2, 284–296. MR 1405056, DOI 10.1112/jlms/54.2.284
- Pascal Auscher, Steve Hofmann, John L. Lewis, and Philippe Tchamitchian, Extrapolation of Carleson measures and the analyticity of Kato’s square-root operators, Acta Math. 187 (2001), no. 2, 161–190. MR 1879847, DOI 10.1007/BF02392615
- Pascal Auscher, Alan McIntosh, and Philippe Tchamitchian, Heat kernels of second order complex elliptic operators and applications, J. Funct. Anal. 152 (1998), no. 1, 22–73. MR 1600066, DOI 10.1006/jfan.1997.3156
- Pascal Auscher and Philippe Tchamitchian, Square root problem for divergence operators and related topics, Astérisque 249 (1998), viii+172 (English, with English and French summaries). MR 1651262
- Pascal Auscher, Steve Hofmann, Michael Lacey, Alan McIntosh, and Ph. Tchamitchian, The solution of the Kato square root problem for second order elliptic operators on ${\Bbb R}^n$, Ann. of Math. (2) 156 (2002), no. 2, 633–654. MR 1933726, DOI 10.2307/3597201
- R. R. Coifman, D. G. Deng, and Y. Meyer, Domaine de la racine carrée de certains opérateurs différentiels accrétifs, Ann. Inst. Fourier (Grenoble) 33 (1983), no. 2, x, 123–134 (French, with English summary). MR 699490, DOI 10.5802/aif.919
- R. R. Coifman, A. McIntosh, and Y. Meyer, L’intégrale de Cauchy définit un opérateur borné sur $L^{2}$ pour les courbes lipschitziennes, Ann. of Math. (2) 116 (1982), no. 2, 361–387 (French). MR 672839, DOI 10.2307/2007065
- R. Coifman, P.-L. Lions, Y. Meyer, and S. Semmes, Compensated compactness and Hardy spaces, J. Math. Pures Appl. (9) 72 (1993), no. 3, 247–286 (English, with English and French summaries). MR 1225511
- M. Cotlar, A combinatorial inequality and its applications to $L^2$-spaces, Rev. Mat. Cuyana 1 (1955), 41–55 (1956). MR 80263
- Guy David and Jean-Lin Journé, A boundedness criterion for generalized Calderón-Zygmund operators, Ann. of Math. (2) 120 (1984), no. 2, 371–397. MR 763911, DOI 10.2307/2006946
- Eugene B. Fabes, David S. Jerison, and Carlos E. Kenig, Multilinear square functions and partial differential equations, Amer. J. Math. 107 (1985), no. 6, 1325–1368 (1986). MR 815765, DOI 10.2307/2374409
- Eugene B. Fabes, David S. Jerison, and Carlos E. Kenig, Necessary and sufficient conditions for absolute continuity of elliptic-harmonic measure, Ann. of Math. (2) 119 (1984), no. 1, 121–141. MR 736563, DOI 10.2307/2006966
- C. Fefferman and E. M. Stein, $H^{p}$ spaces of several variables, Acta Math. 129 (1972), no. 3-4, 137–193. MR 447953, DOI 10.1007/BF02392215
- F. W. Gehring, The $L^{p}$-integrability of the partial derivatives of a quasiconformal mapping, Acta Math. 130 (1973), 265–277. MR 402038, DOI 10.1007/BF02392268
- Steve Hofmann and Alan McIntosh, The solution of the Kato problem in two dimensions, Proceedings of the 6th International Conference on Harmonic Analysis and Partial Differential Equations (El Escorial, 2000), 2002, pp. 143–160. MR 1964818, DOI 10.5565/PUBLMAT_{E}sco02_{0}6
- Steve Hofmann, Michael Lacey, and Alan McIntosh, The solution of the Kato problem for divergence form elliptic operators with Gaussian heat kernel bounds, Ann. of Math. (2) 156 (2002), no. 2, 623–631. MR 1933725, DOI 10.2307/3597200
- F. John and L. Nirenberg, On functions of bounded mean oscillation, Comm. Pure Appl. Math. 14 (1961), 415–426. MR 131498, DOI 10.1002/cpa.3160140317
- Jean-Lin Journé, Remarks on Kato’s square-root problem, Publ. Mat. 35 (1991), no. 1, 299–321. Conference on Mathematical Analysis (El Escorial, 1989). MR 1103623, DOI 10.5565/PUBLMAT_{3}5191_{1}6
- Tosio Kato, Perturbation theory for linear operators, Die Grundlehren der mathematischen Wissenschaften, Band 132, Springer-Verlag New York, Inc., New York, 1966. MR 0203473
- Tosio Kato, Fractional powers of dissipative operators, J. Math. Soc. Japan 13 (1961), 246–274. MR 138005, DOI 10.2969/jmsj/01330246
- C. Kenig and Y. Meyer, Kato’s square roots of accretive operators and Cauchy kernels on Lipschitz curves are the same, Recent progress in Fourier analysis (El Escorial, 1983) North-Holland Math. Stud., vol. 111, North-Holland, Amsterdam, 1985, pp. 123–143. MR 848144, DOI 10.1016/S0304-0208(08)70282-2
- Robert H. Latter, A characterization of $H^{p}(\textbf {R}^{n})$ in terms of atoms, Studia Math. 62 (1978), no. 1, 93–101. MR 482111, DOI 10.4064/sm-62-1-93-101
- J.-L. Lions, Espaces d’interpolation et domaines de puissances fractionnaires d’opérateurs, J. Math. Soc. Japan 14 (1962), 233–241 (French). MR 152878, DOI 10.2969/jmsj/01420233
- Alan McIntosh, On the comparability of $A^{1/2}$ and $A^{\ast 1/2}$, Proc. Amer. Math. Soc. 32 (1972), 430–434. MR 290169, DOI 10.1090/S0002-9939-1972-0290169-7
- Alan McIntosh, Square roots of operators and applications to hyperbolic PDEs, Miniconference on operator theory and partial differential equations (Canberra, 1983) Proc. Centre Math. Anal. Austral. Nat. Univ., vol. 5, Austral. Nat. Univ., Canberra, 1984, pp. 124–136. MR 757577
- Gregory Seregin, Luis Silvestre, Vladimír Šverák, and Andrej Zlatoš, On divergence-free drifts, J. Differential Equations 252 (2012), no. 1, 505–540. MR 2852216, DOI 10.1016/j.jde.2011.08.039
- Elias M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Mathematical Series, vol. 43, Princeton University Press, Princeton, NJ, 1993. With the assistance of Timothy S. Murphy; Monographs in Harmonic Analysis, III. MR 1232192
- E. W. Stredulinsky, Higher integrability from reverse Hölder inequalities, Indiana Univ. Math. J. 29 (1980), no. 3, 407–413. MR 570689, DOI 10.1512/iumj.1980.29.29029
- Q. Zhongmin and X. Guangyu, Parabolic equations with singular divergence-free drift vector fields, arXiv:1612.07727.
Bibliographic Information
- Luis Escauriaza
- Affiliation: UPV/EHU, Departamento de Matemáticas, Barrio Sarriena s/n, 48940 Leioa, Spain
- MR Author ID: 64095
- Email: luis.escauriaza@ehu.eus
- Steve Hofmann
- Affiliation: Department of Mathematics, University of Missouri-Columbia, Columbia, Missouri 65211
- MR Author ID: 251819
- ORCID: 0000-0003-1110-6970
- Email: hofmann@math.missouri.edu
- Received by editor(s): December 28, 2017
- Received by editor(s) in revised form: April 24, 2018
- Published electronically: September 17, 2018
- Additional Notes: The first author was supported by grants MTM2014-53145-P and IT641-13 (GIC12/96).
The second author was supported by NSF grant no. DMS-1664047.
This material is based upon work supported by the National Science Foundation under Grant No. DMS- 1440140 while the authors were in residence at the Mathematical Sciences Research Institute in Berkeley, California, during the Spring 2017 semester. - Communicated by: Svitlana Mayboroda
- © Copyright 2018 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 146 (2018), 5295-5310
- MSC (2010): Primary 35B45, 35J15, 35J25, 42B20, 42B37, 47B44
- DOI: https://doi.org/10.1090/proc/14224
- MathSciNet review: 3866869