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Abstract. We deduce a formula for the exact number of gridpoints (i.e., ele-

ments of Zd) in the extended d-dimensional cube nCd = [−n,+n]d on intersect-
ing hyperplanes. In the special case of the hyperplanes {x ∈ R

d | x1 + · · ·+xd

= b}, b ∈ Z, these numbers can be written as a finite sum involving products
of certain binomial coefficients. Furthermore, we consider the limit as n tends
to infinity which can be expressed in terms of Euler-Frobenius numbers. Fi-
nally, we state a conjecture on the asymptotic behaviour of this limit as the
dimension d tends to infinity.

1. Introduction and main results

For d ∈ N, let Cd = [−1,+1]
d
denote the d-dimensional cube in R

d. Intersection
of Cd with a hyperplane

(1.1) Ha,b =
{
x ∈ R

d | a · x = b
}

with a = (a1, . . . , ad) ∈ (R� {0})d , b ∈ R,

provides seemingly complicated sets Cd ∩ Ha,b. Evers [7] showed that already in
dimension d = 4 at least 30 different combinatorial types of intersection polyhedrons
occur. In 1986 K. Ball [2] found the (d− 1)-dimensional volume. After rescaling
his remarkable formula reads

(1.2) Vol (Cd ∩Ha,b) =
‖a‖
π

2d−1

∫ +∞

−∞

(
d∏

k=1

sin (akx)

akx

)
cos (bx) dx,

where ‖a‖ =
(∑d

k=1 a
2
k

)1/2

. The special case a = (1, . . . , 1) already appears

in Pólya’s 1913 paper [12]. Ball used formula (1.2) to prove the upper bound

Vol(Cd ∩Ha,b) ≤ 2d−1
√
2 which is best possible for each d. It was conjectured by

Hensley [11] in 1979.
Pólya [12, pages 208–209] presented a geometric argument that the formula∫ +∞

−∞
x−d

(
d∏

k=1

sin (akx)

)
dx

=
π

2d (d− 1)!

∑
ν∈{−1,+1}d

(
d∏

k=1

νk

)
(ν · a)d−1 sgn (ν · a) .(1.3)
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is valid. By application of elementary trigonometric identities the more general
integral in equation (1.2) can be reduced to an integral of the type in equation (1.3)
(see [1]). Pólya [12, page 204] remarked that the integral in (1.3) is a special case
of the integral ∫ +∞

−∞
e−pxx−d

(
d∏

k=1

sin (akx)

)
dx (p > 0)

in the integral table [6, Table 371, Nr. 5] by David Bierens de Haan, wherein the
1862 book [5, pages 344–346] is cited. D. Borwein and J. M. Borwein [3, Theorem
2 (ii)] gave a very elegant proof of equation (1.2). For further recent attempts to
calculate the integral in equation (1.2) see, e.g., the work by R. Frank und H. Riede
[8], [9] and the paper [1].

In this note we consider the discrete analogue of the above problem. We count
the gridpoints (that are the elements of Zd) in the extended d-dimensional cube

nCd = [−n,+n]d on intersecting hyperplanes Ha,b. That means we consider the set
nCd ∩Ha,b ∩ Z

d. We denote its cardinality by

Sd (a, b, n) := �
(
nCd ∩Ha,b ∩ Z

d
)
.

In the discrete case it is quite natural to assume that a = (a1, . . . , ad) ∈ (Z� {0})d,
and b ∈ Z.

In the next section we derive a formula for Sd (a, b, n) in terms of a finite sum
over all subsets of {1, . . . , d}. The subsequent section considers the special case
a = 1 := (1, . . . , 1) ∈ Z

d. The main result is a representation of Sd (1, b, n) as a
combinatorial sum. Finally, we consider the limit

√
d lim
n→∞

(2n+ 1)−(d−1) Sd (1, nx, n)

and close with a conjecture on its asymptotic behaviour as the dimension d tends
to infinity.

2. A formula for Sd (a, b, n)

We use the following notation: For ν = (ν1, . . . , νd) ∈ Z
d let |ν| := ν1 + · · ·+ νr.

Furthermore, define the function δ : R →{0, 1} by δ (t) = 1, for t = 0, and δ (t) = 0
otherwise. Taking advantage of the equation

∫ π

−π
eintdt = 2πδ (n), for n ∈ Z, we

obtain

Sd (a, b, n) =
∑

ν∈nCd

δ (a · ν − b) =
1

2π

∫ π

−π

( ∑
ν∈nCd

ei(a·ν−b)t

)
dt

=
1

2π

∫ π

−π

(
d∏

k=1

sin
(
ak

2n+1
2 t

)
sin

(
ak

t
2

)
)
e−ibtdt,

where we used the formula for geometric series. Geometric evidence as well as the
latter integral reveal the symmetry Sd (a, b, n) = Sd (a,−b, n) for all b ∈ Z. Hence,
we arrive at the well-known formula

Sd (a, b, n) =
1

2π

∫ π

−π

(
d∏

k=1

sin
(
ak

2n+1
2 t

)
sin

(
ak

t
2

)
)
cos (bx) dt.
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This procedure can easily be extended to the more general condition AνT = bT ,
where A is an (r, d)−matrix, for a certain integer r ≤ d, and b ∈ Z

r. It seems to
be natural to suppose that rank(A) = r. The number of gridpoints in the extended

d-dimensional cube nCd = [−n,+n]d satisfying AνT = bT , can be expressed by an
r-fold integral

(2π)−r
∫
[−π,π]r

( ∑
ν∈nCd

ei(tAνT )

)
e−i(bt)dt,

where t =(t1,...,tr). Application of the geometric series as above leads to the fol-
lowing theorem.

Theorem 2.1. For integers r, d satisfying 1 ≤ r ≤ d, let A = (ajk) be an (r, d)-
matrix and b ∈ Z

r. The number of gridpoints in the extended d-dimensional cube

nCd = [−n,+n]d satisfying AνT = bT , is given by

1

(2π)r

∫
[−π,π]r

⎛
⎝ d∏

k=1

sin
(

2n+1
2

∑r
j=1 ajktj

)
sin

(
1
2

∑r
j=1 ajktj

)
⎞
⎠ e−i(bt)dt.

Let us return to the special case of a crossing hyperplane, i.e., the case r = 1.
The change of variable z = eit yields the representation as a contour integral

(2.1) Sd (a, b, n) =
1

2πi

∫
|z|=ρ

(
d∏

k=1

zak(2n+1) − 1

zak − 1

)
z−|a|n−b−1dz

for all positive ρ < 1. Another possibility, to obtain this formula is the observation
that Sd (a, b, n) is the coefficient of zb in the power series expansion around z = 0
of the function ∑

ν∈nCd

za·ν = z−|a|n
d∏

k=1

zak(2n+1) − 1

zak − 1

or the coefficient of z|a|n+b in the power series expansion of the function

d∏
k=1

zak(2n+1) − 1

zak − 1
.

By the Cauchy integral formula, both quantities are equal. With the notation
[d] := {1, . . . , d}, the numerator

d∏
k=1

(
zak(2n+1) − 1

)
=

d∑
j=0

(−1)
d−j

∑
K⊆[d]
�K=j

z(2n+1)
∑

k∈K ak

has the derivatives[(
d

dz

)μ d∏
k=1

(
zak(2n+1) − 1

)]
z=0

= μ!
∑

K⊆[d]

(−1)d−�K δ

(
(2n+ 1)

(∑
k∈K

ak

)
− μ

)
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for μ ∈ Z≥0. On the other hand, we have

[(
d

dz

)μ

(zak − 1)
−1

]
z=0

= −

⎡
⎣(

d

dz

)μ ∞∑
j=0

zjak

⎤
⎦
z=0

=

⎧⎨
⎩

−μ! if μ = jak for some j ∈ Z≥0,

0 otherwise,

and thus[(
d

dz

)μ d∏
k=1

(zak − 1)
−1

]
z=0

= (−1)
d
μ! · �

{
ν ∈ Z

d
≥0 | ν · a = μ

}
.

Hence, the Leibniz rule for differentiation yields

Sd (a, b, n) = (−1)d
|a|n+b∑
s=0

(
|a|n+ b

s

)
s! · �

{
ν ∈ Z

d
≥0 | ν · a = s

}

×
∑

K⊆[d]

(−1)
d−�K · (|a|n+ b− s)!δ

(
(2n+ 1)

(∑
k∈K

ak

)
− |a|n− b+ s

)

and we arrive at the following theorem.

Theorem 2.2. Let r, n be positive integers. For a = (a1, . . . , ad) ∈ (Z� {0})d and
b ∈ Z,

Sd (a, b, n) = (|a|n+ b)!

|a|n+b∑
s=0

�
{
ν ∈ Z

d
≥0 | ν · a = s

}

×
∑

K⊆[d]

(−1)�K · δ
(
(2n+ 1)

(∑
k∈K

ak

)
− |a|n− b+ s

)
.

3. The special case a = (1, . . . , 1) ∈ Z
d

Now we consider the vector a = 1 := (1, . . . , 1) ∈ Z
d. In this special case the

formula (2.1) reduces to

Sd (1, b, n) =
1

2πi

∫
|z|=ρ

(
z2n+1 − 1

z − 1

)d

z−dn−b−1dz.

By the Cauchy integral formula and using the symmetry Sd (1, b, n) = Sd (1,−b, n),
we have

Sd (1, b, n) =
1

(dn+ b)!

[(
z2n+1 − 1

z − 1

)d
](dn+b)

∣∣∣∣∣∣
z=0

.
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Application of the Leibniz rule yields[(
z2n+1 − 1

z − 1

)d
](dn+b)

∣∣∣∣∣∣
z=0

=

(
dn+b∑
k=0

(
dn+ b

k

) ⎡
⎣(

d

dz

)k d∑
j=0

(
d

j

)
(−1)d−j zj(2n+1)

⎤
⎦

×
[(

d

dz

)dn+b−k

(z − 1)−d

] )∣∣∣∣∣
z=0

=

d∑
j=0

(
d

j

)
(−1)

d−j
dn+b∑
k=0

(
dn+ b

k

)

× (j (2n+ 1))
k
δ (j (2n+ 1)− k) (−d)

dn+b−k
(−1)

−d−(dn+b−k)
.

Because

(−1)dn+b−k (−d)dn+b−k = (d− 1 + dn+ b− k)dn+b−k

we obtain

Sd (1, b, n) =
1

(dn+ b)!

∑
0≤j≤(dn+b)/(2n+1)

(−1)j
(
d

j

)
(dn+ b)j(2n+1)

× (d− 1 + dn+ b− j (2n+ 1))dn+b−j(2n+1) .

Thus we have proved the following representation of Sd (1, b, n).

Theorem 3.1. Let d, n be positive integers. For 1 = (1, . . . , 1) ∈ Z
d and b ∈ Z,

Sd (1, b, n) =
∑

0≤j≤(dn+b)/(2n+1)

(−1)
j

(
d

j

)(
d− 1 + dn+ b− j (2n+ 1)

d− 1

)
.

For scaling, we put b = nx with −d ≤ x ≤ d. Fix d and x. We have

lim
n→∞

(2n+ 1)
−(d−1)

Sd (1, nx, n)

=
2−(d−1)

(d− 1)!

∑
0≤j≤(d+x)/2

(−1)j
(
d

j

)
(d+ x− 2j)d−1 .(3.1)

Now we study the asymptotic behaviour of

(3.2) Ld (x) :=
√
d lim
n→∞

(2n+ 1)
−(d−1)

Sd (1, nx, n)

as the dimension d tends to infinity.
The right-hand side of equation (3.1) is intimately connected with the Euler-

Frobenius numbers Am,� (λ). These numbers are defined as the coefficients of the
Euler-Frobenius polynomials Pm,λ (z) which can be introduced via the rational
function expansion

∞∑
ν=0

(ν + λ)m zν =
Pm,λ (z)

(1− z)m+1 (m = 0, 1, 2, . . .) ,
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where 0 ≤ λ < 1. They satisfy the relation

(z + 1− λ)
m

=

m∑
�=0

Am,� (λ)

(
z + �

m

)

and have the explicit representation

(3.3) Am,� (λ) =

�∑
j=0

(−1)
j

(
m+ 1

j

)
(�+ λ− j)

m

(see [10, Lemma 2.2 (v) and (iii)]). Denoting by �z	 the largest integer less than or
equal to z and by {z} the integer part of z ∈ R (such that z = �z	+ {z}) we have

Ld (x) =

√
d

(d− 1)!

�(d+x)/2	∑
j=0

(−1)
j

(
d

j

) (
d+ x

2
− j

)d−1

.

By equation (3.3) we obtain the representation

Ld (x) =

√
d

Γ (d)
Ad−1,�(d+x)/2	 ({(d+ x) /2}) .

Gawronski and Neuschel [10, Theorem 4.3] proved, for k ≥ 3, the asymptotic
relation √

m+ 1

12

1

m!
Am,� (λ)

=
1√
2π

e−t2/2

⎛
⎝1 +

�(k−2)/2	∑
μ=1

p4μ (t)

(m+ 1)
μ

⎞
⎠ + o

(
1

(m+ 1)
(k−2)/2

)
(3.4)

as m → ∞ uniformly in � ∈ Z, with explicitly computable even polynomials p4μ of
the quantity

t =

(
�+ λ− m+ 1

2

) √
12

m+ 1

the degrees of which are at most 4μ. We conjecture that (3.4) holds uniformly in
the variable λ. If so the following conjecture would be true.

Conjecture 3.2. For d ∈ Z, k ≥ 3, and −d ≤ x ≤ d, the limit (3.1) satisfies the
asymptotic relation

Ld (x) =

√
6

π
e−3x2/(2d)

⎛
⎜⎝1 +

�(k−2)/2	∑
μ=1

p4μ

(√
3
dx

)
dμ

⎞
⎟⎠ + o

(
1

d(k−2)/2

)

as d → ∞. In particular, for x ∈ R,

lim
d→∞

Ld

(√
dx

)
=

√
6

π
e−3x2/2.
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