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ABSTRACT. We deduce a formula for the exact number of gridpoints (i.e., ele-
ments of Z?) in the extended d-dimensional cube nCy = [—n, +n]? on intersect-
ing hyperplanes. In the special case of the hyperplanes {z € R? | 21 4+ -4+ x4
= b}, b € Z, these numbers can be written as a finite sum involving products
of certain binomial coefficients. Furthermore, we consider the limit as n tends
to infinity which can be expressed in terms of Euler-Frobenius numbers. Fi-
nally, we state a conjecture on the asymptotic behaviour of this limit as the
dimension d tends to infinity.

1. INTRODUCTION AND MAIN RESULTS

For d € N, let Cy = [-1, —|—1]d denote the d-dimensional cube in R?. Intersection
of Cy with a hyperplane
(1.1) Hyp={z R |a-z =0} with a = (ay, .. .,aq) € (R~ {OD?, b € R,

provides seemingly complicated sets Cy N H,p. Evers [7] showed that already in
dimension d = 4 at least 30 different combinatorial types of intersection polyhedrons
occur. In 1986 K. Ball [2] found the (d — 1)-dimensional volume. After rescaling
his remarkable formula reads

400 d .
(1.2) Vol (CqyN Hyp) = M2d_l/ H sin (az) cos (bx) dz,
™

-0 \jpZ1 KT
4 1/2
where ||a| = (Zk:l a%) . The special case a = (1,...,1) already appears
in Pélya’s 1913 paper [12]. Ball used formula (2] to prove the upper bound
Vol(Cy N H,yp) < 29714/2 which is best possible for each d. It was conjectured by

Hensley [11] in 1979.
Pélya [12 pages 208-209] presented a geometric argument that the formula

+oo d
/ z ¢ H sin (agx) | dx
k=1

d
™ —
(13) = m E Hl/k (V'a)d 1sgn (l/'a).
Tve{—1,4+1}¢ \k=1
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is valid. By application of elementary trigonometric identities the more general
integral in equation (2] can be reduced to an integral of the type in equation (L3)
(see [1]). Pdlya [12 page 204] remarked that the integral in (L3]) is a special case
of the integral

—0Q0

+oo d
/ e Py (H sin (a;m;)) dx (p>0)
k=1

in the integral table [6, Table 371, Nr. 5] by David Bierens de Haan, wherein the
1862 book [0, pages 344-346] is cited. D. Borwein and J. M. Borwein [3, Theorem
2 (ii)] gave a very elegant proof of equation ([Z)). For further recent attempts to
calculate the integral in equation ([L2]) see, e.g., the work by R. Frank und H. Riede
[8], [9] and the paper [I].

In this note we consider the discrete analogue of the above problem. We count
the gridpoints (that are the elements of Z?) in the extended d-dimensional cube
nCy = [—n, —|—n]d on intersecting hyperplanes H, ;. That means we consider the set
nCq N HgpN Z%. We denote its cardinality by

Sq(a,b,n) =1 (nC’d NHgpN Zd) .

In the discrete case it is quite natural to assume that a = (a1, ..., aq) € (Z~ {0},
and b € Z.

In the next section we derive a formula for Sy (a,b,n) in terms of a finite sum
over all subsets of {1,...,d}. The subsequent section considers the special case
a=1:=(1,...,1) € Z% The main result is a representation of S;(1,b,n) as a
combinatorial sum. Finally, we consider the limit

Vd lim (2n + 1)_(d_1) Sq (1,nz,n)

n— oo

and close with a conjecture on its asymptotic behaviour as the dimension d tends
to infinity.

2. A FORMULA FOR Sy (a,b,n)

We use the following notation: For v = (v1,...,vq) € Z4let || := v + -+ + 1.
Furthermore, define the function d : R —{0,1} by ¢ (t) = 1, for t =0, and § (t) = 0
otherwise. Taking advantage of the equation ["_e™'dt = 2n6 (n), for n € Z, we
obtain

Sq(a,b,n) = Z 5(a-1/—b):2i/ < Z ei(a-v—b)t> dt
venCy TJm venCy
_ L (ﬁ M) ——
27 =T \ =1 Sln(aki)

where we used the formula for geometric series. Geometric evidence as well as the
latter integral reveal the symmetry Sy (a,b,n) =S4 (a, —b,n) for all b € Z. Hence,
we arrive at the well-known formula

4 4 gin (a2l
Sy (a,b,n) = %/ (H %) cos (ba) dt.

T \ k=1 ak§
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This procedure can easily be extended to the more general condition Av” = b7,
where A is an (r,d) —matrix, for a certain integer r < d, and b € Z". It seems to
be natural to suppose that rank(A) = r. The number of gridpoints in the extended

d-dimensional cube nCy = [—n, +n]” satisfying Av” = b7, can be expressed by an
r-fold integral
e [ < > ei<tAvT>) e
=" \venc,

where t = (tL_“’t,«). Application of the geometric series as above leads to the fol-
lowing theorem.

Theorem 2.1. For integers r,d satisfying 1 < r < d, let A = (a;x) be an (r,d)-
matriz and b € Z". The number of gridpoints in the extended d-dimensional cube
nCyq = [—n, —l—n]d satisfying AvT = b”, is given by

d sin(M L a; tl)
( 77) [—m,m] k=1 sin (% 22:1 ajktj)

Let us return to the special case of a crossing hyperplane, i.e., the case r = 1.
The change of variable z = ¢ yields the representation as a contour integral

d

1 Zak(QnJrl) -1
21 - o I Vg
(2.1) Sq(a,b,n) 57 /Z_p (H ] ) z dz

k=1

for all positive p < 1. Another possibility, to obtain this formula is the observation
that Sg (a,b,n) is the coefficient of 2° in the power series expansion around z = 0
of the function

4 _ap(2n+1) _ 1

. _ z
E L0V — |a\nH
Z% — 1

venCy k=1
or the coefficient of /21" in the power series expansion of the function
d ar(2n+1) _
H zo — 1

k=1

By the Cauchy integral formula, both quantities are equal. With the notation
[d] :={1,...,d}, the numerator

f[ (Zak(2n+l) _ 1) _ zd: (_1)d*j Z Z(2n+1) Dkek Ok

k=1 §=0 KC[d]
K=y

has the derivatives

d . d a n
()] 1<z )

:'u,| dﬁK <2n+1 (Zak>— )
Kg[d] kEK
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for 1 € Z>p. On the other hand, we have

(&) ] [@rg]

—p!if p = jay, for some j € Zx,
0 otherwise,

and thus

k=1

nod
[(%) IT G- 1)—1] =(-)'ul-t{veziy|v-a=pu}.
z=0

Hence, the Leibniz rule for differentiation yields

|la|n+b
Sq(a,b,n) = (—1) Z (|a|z+b>s!-ﬂ{1/ € Z‘éo |v-a=s}
s=0
x Y (_1)dﬂK-(|an+b—s)!5<2n+1 (Zak> —|an—b—|—s>
KC[d] kEK

and we arrive at the following theorem.

Theorem 2.2. Let r,n be positive integers. For a = (ay,...,aq) € (Z~{0})? and

beZ,
la|n+b
Sa(a,by,n) = (Ja|n+b)! Z H{VEZ%O |v-a=s}
s=0
xz <2n+1 (Zak>—|an—b+s>.
KC[d] kEK
3. THE SPECIAL CASE a= (1,...,1) € Z¢
Now we consider the vector a = 1 := (1,...,1) € Z%. In this special case the

formula (21]) reduces to

n d
Sq(1,b,n) = ! / & Zmdn=b=1gy,
2mi |2|=p z—1

By the Cauchy integral formula and using the symmetry Sy (1,b,n) = S4 (1, —b,n),

we have
1 Z2ntl _q
(=)

(dn + b)!

47 (dn+b)
Sd (13 ba TL) = ]

z=0
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Application of the Leibniz rule yields
ZQnJrl _ 1 d
(=)
dn+b k d
= Z dn +b 3 Z d (—1)% ziCn+D)
k dz J

k=0 0
X l(%)dn+bk (z— 1)d]
=3 (NS ()

k=0
X (G20 1)88(f (20 + 1) = k) (=d)#0=E (-1~

(dn+b)

Because
(_1)dn+b—k7 (_d)dn"t‘b—k _ (d _ 1 + dn + b _ k;)dn-‘rb—k:
we obtain
1 (d om
Sd (Lb, n) = m Z (—1)j () (dn+b)M
" T 0<j<(dn+b)/(2n+1) J

x(d—1+4dn+b—j(2n+1))ntb=iCntl)
Thus we have proved the following representation of Sy (1,b,n).
Theorem 3.1. Let d,n be positive integers. For 1 =(1,...,1) € 74 and b € 7,
Sy (1,bn) = | Z (—1) (j)(d—l—kdn;—_bl—j(?n—l—l)).
0<j<(dn+b)/(2n+1)
For scaling, we put b = nz with —d < z < d. Fix d and . We have

lim (2n + 1)7(d71) Sq (1,nx,n)

n—oo
2-(d-1) i (d Nd—1
(3.1) =@ > (—1)J(.> (d+z—25)°"".
T 0<j<(dta)/2 J
Now we study the asymptotic behaviour of
(3.2) Ly () =V lim 20+ 1)"“" 8, (1,nz,n)

as the dimension d tends to infinity.

The right-hand side of equation (B1I) is intimately connected with the Euler-
Frobenius numbers A,, ¢ (A). These numbers are defined as the coefficients of the
Euler-Frobenius polynomials P, ) (z) which can be introduced via the rational
function expansion

oo

S aym e = Tmald

MG m=0,1,2,...),
2 TS ( )
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where 0 < A < 1. They satisfy the relation

(z+1-A" :Em:Amyg()\) (Z”)

m
£=0

and have the explicit representation

14

(33) Ane =30 (T e ea-

Jj=0

(see [10, Lemma 2.2 (v) and (iii)]). Denoting by |z| the largest integer less than or
equal to z and by {z} the integer part of z € R (such that z = |z] + {z}) we have

=0 J

By equation (3] we obtain the representation

Vd
Lq(2) = =+ Ad-1,(d+x)/2) {(d+ ) /2}).
I'(d)
Gawronski and Neuschel [I0, Theorem 4.3] proved, for k£ > 3, the asymptotic
relation

m+11
o g me ()
[(k—2)/2]
1 42 Pa (t) 1
(3.4) — et 1y SLCTASO PN (R
Var 2 mrry ) P\ eon

as m — oo uniformly in ¢ € Z, with explicitly computable even polynomials py4,, of
the quantity

1 12
= (€+A—m+ )

2 m+1

the degrees of which are at most 4. We conjecture that (4] holds uniformly in
the variable X. If so the following conjecture would be true.

Conjecture 3.2. Ford € Z, k > 3, and —d < x < d, the limit (31)) satisfies the
asymptotic relation

[(k—2)/2] 3
6 DPap ar 1
Ld(x)—\/;e_3””2/(2d) TS pu (/i) +0(—)

‘ dar d(k—2)/2
I_L:

as d — oo. In particular, for x € R,

: _ 6 —3x2/2
Ji (V) = e
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