# THE NUMBER OF GRIDPOINTS ON HYPERPLANE SECTIONS OF THE $d$-DIMENSIONAL CUBE 

ULRICH ABEL<br>(Communicated by Mourad Ismail)

In loving memory of my dear wife Anke (1967-2018)


#### Abstract

We deduce a formula for the exact number of gridpoints (i.e., elements of $\mathbb{Z}^{d}$ ) in the extended $d$-dimensional cube $n C_{d}=[-n,+n]^{d}$ on intersecting hyperplanes. In the special case of the hyperplanes $\left\{x \in \mathbb{R}^{d} \mid x_{1}+\cdots+x_{d}\right.$ $=b\}, b \in \mathbb{Z}$, these numbers can be written as a finite sum involving products of certain binomial coefficients. Furthermore, we consider the limit as $n$ tends to infinity which can be expressed in terms of Euler-Frobenius numbers. Finally, we state a conjecture on the asymptotic behaviour of this limit as the dimension $d$ tends to infinity.


## 1. Introduction and main results

For $d \in \mathbb{N}$, let $C_{d}=[-1,+1]^{d}$ denote the $d$-dimensional cube in $\mathbb{R}^{d}$. Intersection of $C_{d}$ with a hyperplane
(1.1) $H_{a, b}=\left\{x \in \mathbb{R}^{d} \mid a \cdot x=b\right\} \quad$ with $a=\left(a_{1}, \ldots, a_{d}\right) \in(\mathbb{R} \backslash\{0\})^{d}, b \in \mathbb{R}$, provides seemingly complicated sets $C_{d} \cap H_{a, b}$. Evers [7] showed that already in dimension $d=4$ at least 30 different combinatorial types of intersection polyhedrons occur. In 1986 K . Ball [2] found the ( $d-1$ )-dimensional volume. After rescaling his remarkable formula reads

$$
\begin{equation*}
\operatorname{Vol}\left(C_{d} \cap H_{a, b}\right)=\frac{\|a\|}{\pi} 2^{d-1} \int_{-\infty}^{+\infty}\left(\prod_{k=1}^{d} \frac{\sin \left(a_{k} x\right)}{a_{k} x}\right) \cos (b x) d x \tag{1.2}
\end{equation*}
$$

where $\|a\|=\left(\sum_{k=1}^{d} a_{k}^{2}\right)^{1 / 2}$. The special case $a=(1, \ldots, 1)$ already appears in Pólya's 1913 paper [12]. Ball used formula (1.2) to prove the upper bound $\operatorname{Vol}\left(C_{d} \cap H_{a, b}\right) \leq 2^{d-1} \sqrt{2}$ which is best possible for each $d$. It was conjectured by Hensley 11 in 1979.

Pólya [12, pages 208-209] presented a geometric argument that the formula

$$
\begin{align*}
\int_{-\infty}^{+\infty} & x^{-d}\left(\prod_{k=1}^{d} \sin \left(a_{k} x\right)\right) d x \\
& =\frac{\pi}{2^{d}(d-1)!} \sum_{\nu \in\{-1,+1\}^{d}}\left(\prod_{k=1}^{d} \nu_{k}\right)(\nu \cdot a)^{d-1} \operatorname{sgn}(\nu \cdot a) . \tag{1.3}
\end{align*}
$$

Received by the editors February 27, 2017.
2010 Mathematics Subject Classification. Primary 52B20; Secondary 05A15.
is valid. By application of elementary trigonometric identities the more general integral in equation (1.2) can be reduced to an integral of the type in equation (1.3) (see [1). Pólya [12, page 204] remarked that the integral in (1.3) is a special case of the integral

$$
\int_{-\infty}^{+\infty} e^{-p x} x^{-d}\left(\prod_{k=1}^{d} \sin \left(a_{k} x\right)\right) d x \quad(p>0)
$$

in the integral table [6, Table 371, Nr. 5] by David Bierens de Haan, wherein the 1862 book [5, pages 344-346] is cited. D. Borwein and J. M. Borwein [3, Theorem 2 (ii)] gave a very elegant proof of equation (1.2). For further recent attempts to calculate the integral in equation (1.2) see, e.g., the work by R. Frank und H. Riede [8, (9) and the paper [1].

In this note we consider the discrete analogue of the above problem. We count the gridpoints (that are the elements of $\mathbb{Z}^{d}$ ) in the extended $d$-dimensional cube $n C_{d}=[-n,+n]^{d}$ on intersecting hyperplanes $H_{a, b}$. That means we consider the set $n C_{d} \cap H_{a, b} \cap \mathbb{Z}^{d}$. We denote its cardinality by

$$
S_{d}(a, b, n):=\sharp\left(n C_{d} \cap H_{a, b} \cap \mathbb{Z}^{d}\right) .
$$

In the discrete case it is quite natural to assume that $a=\left(a_{1}, \ldots, a_{d}\right) \in(\mathbb{Z} \backslash\{0\})^{d}$, and $b \in \mathbb{Z}$.

In the next section we derive a formula for $S_{d}(a, b, n)$ in terms of a finite sum over all subsets of $\{1, \ldots, d\}$. The subsequent section considers the special case $\mathbf{a}=\mathbf{1}:=(1, \ldots, 1) \in \mathbb{Z}^{d}$. The main result is a representation of $S_{d}(\mathbf{1}, b, n)$ as a combinatorial sum. Finally, we consider the limit

$$
\sqrt{d} \lim _{n \rightarrow \infty}(2 n+1)^{-(d-1)} S_{d}(\mathbf{1}, n x, n)
$$

and close with a conjecture on its asymptotic behaviour as the dimension $d$ tends to infinity.

## 2. A formula for $S_{d}(a, b, n)$

We use the following notation: For $\nu=\left(\nu_{1}, \ldots, \nu_{d}\right) \in \mathbb{Z}^{d}$ let $|\nu|:=\nu_{1}+\cdots+\nu_{r}$. Furthermore, define the function $\delta: \mathbb{R} \rightarrow\{0,1\}$ by $\delta(t)=1$, for $t=0$, and $\delta(t)=0$ otherwise. Taking advantage of the equation $\int_{-\pi}^{\pi} e^{i n t} d t=2 \pi \delta(n)$, for $n \in \mathbb{Z}$, we obtain

$$
\begin{aligned}
S_{d}(a, b, n) & =\sum_{\nu \in n C_{d}} \delta(a \cdot \nu-b)=\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left(\sum_{\nu \in n C_{d}} e^{i(a \cdot \nu-b) t}\right) d t \\
& =\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left(\prod_{k=1}^{d} \frac{\sin \left(a_{k} \frac{2 n+1}{2} t\right)}{\sin \left(a_{k} \frac{t}{2}\right)}\right) e^{-i b t} d t
\end{aligned}
$$

where we used the formula for geometric series. Geometric evidence as well as the latter integral reveal the symmetry $S_{d}(a, b, n)=S_{d}(a,-b, n)$ for all $b \in \mathbb{Z}$. Hence, we arrive at the well-known formula

$$
S_{d}(a, b, n)=\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left(\prod_{k=1}^{d} \frac{\sin \left(a_{k} \frac{2 n+1}{2} t\right)}{\sin \left(a_{k} \frac{t}{2}\right)}\right) \cos (b x) d t
$$

This procedure can easily be extended to the more general condition $A \nu^{T}=\mathbf{b}^{T}$, where $A$ is an $(r, d)$-matrix, for a certain integer $r \leq d$, and $\mathbf{b} \in \mathbb{Z}^{r}$. It seems to be natural to suppose that $\operatorname{rank}(A)=r$. The number of gridpoints in the extended $d$-dimensional cube $n C_{d}=[-n,+n]^{d}$ satisfying $A \nu^{T}=\mathbf{b}^{T}$, can be expressed by an $r$-fold integral

$$
(2 \pi)^{-r} \int_{[-\pi, \pi]^{r}}\left(\sum_{\nu \in n C_{d}} e^{i\left(\mathbf{t} A \nu^{T}\right)}\right) e^{-i(\mathbf{b t})} d \mathbf{t}
$$

where $\mathbf{t}=\left(t_{1, \ldots}, t_{r}\right)$. Application of the geometric series as above leads to the following theorem.

Theorem 2.1. For integers $r, d$ satisfying $1 \leq r \leq d$, let $A=\left(a_{j k}\right)$ be an $(r, d)$ matrix and $\mathbf{b} \in \mathbb{Z}^{r}$. The number of gridpoints in the extended $d$-dimensional cube $n C_{d}=[-n,+n]^{d}$ satisfying $A \nu^{T}=\mathbf{b}^{T}$, is given by

$$
\frac{1}{(2 \pi)^{r}} \int_{[-\pi, \pi]^{r}}\left(\prod_{k=1}^{d} \frac{\sin \left(\frac{2 n+1}{2} \sum_{j=1}^{r} a_{j k} t_{j}\right)}{\sin \left(\frac{1}{2} \sum_{j=1}^{r} a_{j k} t_{j}\right)}\right) e^{-i(\mathbf{b t})} d \mathbf{t} .
$$

Let us return to the special case of a crossing hyperplane, i.e., the case $r=1$. The change of variable $z=e^{i t}$ yields the representation as a contour integral

$$
\begin{equation*}
S_{d}(a, b, n)=\frac{1}{2 \pi i} \int_{|z|=\rho}\left(\prod_{k=1}^{d} \frac{z^{a_{k}(2 n+1)}-1}{z^{a_{k}}-1}\right) z^{-|\mathbf{a}| n-b-1} d z \tag{2.1}
\end{equation*}
$$

for all positive $\rho<1$. Another possibility, to obtain this formula is the observation that $S_{d}(a, b, n)$ is the coefficient of $z^{b}$ in the power series expansion around $z=0$ of the function

$$
\sum_{\nu \in n C_{d}} z^{a \cdot \nu}=z^{-|\mathbf{a}| n} \prod_{k=1}^{d} \frac{z^{a_{k}(2 n+1)}-1}{z^{a_{k}}-1}
$$

or the coefficient of $z^{|\mathbf{a}| n+b}$ in the power series expansion of the function

$$
\prod_{k=1}^{d} \frac{z^{a_{k}(2 n+1)}-1}{z^{a_{k}}-1}
$$

By the Cauchy integral formula, both quantities are equal. With the notation $[d]:=\{1, \ldots, d\}$, the numerator

$$
\prod_{k=1}^{d}\left(z^{a_{k}(2 n+1)}-1\right)=\sum_{j=0}^{d}(-1)^{d-j} \sum_{\substack{K \subseteq[d] \\ \sharp K=j}} z^{(2 n+1) \sum_{k \in K} a_{k}}
$$

has the derivatives

$$
\begin{aligned}
& {\left[\left(\frac{d}{d z}\right)^{\mu} \prod_{k=1}^{d}\left(z^{a_{k}(2 n+1)}-1\right)\right]_{z=0}} \\
& \quad=\mu!\sum_{K \subseteq[d]}(-1)^{d-\sharp K} \delta\left((2 n+1)\left(\sum_{k \in K} a_{k}\right)-\mu\right)
\end{aligned}
$$

for $\mu \in \mathbb{Z}_{\geq 0}$. On the other hand, we have

$$
\begin{aligned}
{\left[\left(\frac{d}{d z}\right)^{\mu}\left(z^{a_{k}}-1\right)^{-1}\right]_{z=0} } & =-\left[\left(\frac{d}{d z}\right)^{\mu} \sum_{j=0}^{\infty} z^{j a_{k}}\right]_{z=0} \\
& = \begin{cases}-\mu! & \text { if } \mu=j a_{k} \text { for some } j \in \mathbb{Z}_{\geq 0} \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

and thus

$$
\left[\left(\frac{d}{d z}\right)^{\mu} \prod_{k=1}^{d}\left(z^{a_{k}}-1\right)^{-1}\right]_{z=0}=(-1)^{d} \mu!\cdot \sharp\left\{\nu \in \mathbb{Z}_{\geq 0}^{d} \mid \nu \cdot a=\mu\right\}
$$

Hence, the Leibniz rule for differentiation yields

$$
\begin{aligned}
S_{d}(a, b, n) & =(-1)^{d} \sum_{s=0}^{|\mathbf{a}| n+b}\binom{|\mathbf{a}| n+b}{s} s!\cdot \sharp\left\{\nu \in \mathbb{Z}_{\geq 0}^{d} \mid \nu \cdot a=s\right\} \\
& \times \sum_{K \subseteq[d]}(-1)^{d-\sharp K} \cdot(|\mathbf{a}| n+b-s)!\delta\left((2 n+1)\left(\sum_{k \in K} a_{k}\right)-|\mathbf{a}| n-b+s\right)
\end{aligned}
$$

and we arrive at the following theorem.
Theorem 2.2. Let $r, n$ be positive integers. For $a=\left(a_{1}, \ldots, a_{d}\right) \in(\mathbb{Z} \backslash\{0\})^{d}$ and $b \in \mathbb{Z}$,

$$
\begin{aligned}
S_{d}(a, b, n)= & (|\mathbf{a}| n+b)!\sum_{s=0}^{|\mathbf{a}| n+b} \sharp\left\{\nu \in \mathbb{Z}_{\geq 0}^{d} \mid \nu \cdot a=s\right\} \\
& \times \sum_{K \subseteq[d]}(-1)^{\sharp K} \cdot \delta\left((2 n+1)\left(\sum_{k \in K} a_{k}\right)-|\mathbf{a}| n-b+s\right) .
\end{aligned}
$$

## 3. The special case $\mathbf{a}=(1, \ldots, 1) \in \mathbb{Z}^{d}$

Now we consider the vector $a=\mathbf{1}:=(1, \ldots, 1) \in \mathbb{Z}^{d}$. In this special case the formula (2.1) reduces to

$$
S_{d}(\mathbf{1}, b, n)=\frac{1}{2 \pi i} \int_{|z|=\rho}\left(\frac{z^{2 n+1}-1}{z-1}\right)^{d} z^{-d n-b-1} d z
$$

By the Cauchy integral formula and using the symmetry $S_{d}(\mathbf{1}, b, n)=S_{d}(\mathbf{1},-b, n)$, we have

$$
S_{d}(\mathbf{1}, b, n)=\left.\frac{1}{(d n+b)!}\left[\left(\frac{z^{2 n+1}-1}{z-1}\right)^{d}\right]^{(d n+b)}\right|_{z=0}
$$

Application of the Leibniz rule yields

$$
\begin{aligned}
& {\left.\left[\left(\frac{z^{2 n+1}-1}{z-1}\right)^{d}\right]^{(d n+b)}\right|_{z=0}} \\
& =\left(\sum_{k=0}^{d n+b}\binom{d n+b}{k}\left[\left(\frac{d}{d z}\right)^{k} \sum_{j=0}^{d}\binom{d}{j}(-1)^{d-j} z^{j(2 n+1)}\right]\right. \\
& \left.\quad \times\left[\left(\frac{d}{d z}\right)^{d n+b-k}(z-1)^{-d}\right]\right)\left.\right|_{z=0} \\
& =\sum_{j=0}^{d}\binom{d}{j}(-1)^{d-j} \sum_{k=0}^{d n+b}\binom{d n+b}{k} \\
& \quad \times(j(2 n+1))^{\frac{k}{\delta}} \delta(j(2 n+1)-k)(-d)^{\frac{d n+b-k}{}}(-1)^{-d-(d n+b-k)} .
\end{aligned}
$$

Because

$$
(-1)^{d n+b-k}(-d)^{\frac{d n+b-k}{}}=(d-1+d n+b-k)^{\underline{d n+b-k}}
$$

we obtain

$$
\begin{aligned}
S_{d}(\mathbf{1}, b, n)= & \frac{1}{(d n+b)!} \sum_{0 \leq j \leq(d n+b) /(2 n+1)}(-1)^{j}\binom{d}{j}(d n+b) \underline{j(2 n+1)} \\
& \times(d-1+d n+b-j(2 n+1)) \underline{d n+b-j(2 n+1)}
\end{aligned}
$$

Thus we have proved the following representation of $S_{d}(\mathbf{1}, b, n)$.
Theorem 3.1. Let $d, n$ be positive integers. For $\mathbf{1}=(1, \ldots, 1) \in \mathbb{Z}^{d}$ and $b \in \mathbb{Z}$,

$$
S_{d}(\mathbf{1}, b, n)=\sum_{0 \leq j \leq(d n+b) /(2 n+1)}(-1)^{j}\binom{d}{j}\binom{d-1+d n+b-j(2 n+1)}{d-1} .
$$

For scaling, we put $b=n x$ with $-d \leq x \leq d$. Fix $d$ and $x$. We have

$$
\begin{align*}
\lim _{n \rightarrow \infty} & (2 n+1)^{-(d-1)} S_{d}(\mathbf{1}, n x, n) \\
& =\frac{2^{-(d-1)}}{(d-1)!} \sum_{0 \leq j \leq(d+x) / 2}(-1)^{j}\binom{d}{j}(d+x-2 j)^{d-1} \tag{3.1}
\end{align*}
$$

Now we study the asymptotic behaviour of

$$
\begin{equation*}
L_{d}(x):=\sqrt{d} \lim _{n \rightarrow \infty}(2 n+1)^{-(d-1)} S_{d}(\mathbf{1}, n x, n) \tag{3.2}
\end{equation*}
$$

as the dimension $d$ tends to infinity.
The right-hand side of equation (3.1) is intimately connected with the EulerFrobenius numbers $A_{m, \ell}(\lambda)$. These numbers are defined as the coefficients of the Euler-Frobenius polynomials $P_{m, \lambda}(z)$ which can be introduced via the rational function expansion

$$
\sum_{\nu=0}^{\infty}(\nu+\lambda)^{m} z^{\nu}=\frac{P_{m, \lambda}(z)}{(1-z)^{m+1}} \quad(m=0,1,2, \ldots)
$$

where $0 \leq \lambda<1$. They satisfy the relation

$$
(z+1-\lambda)^{m}=\sum_{\ell=0}^{m} A_{m, \ell}(\lambda)\binom{z+\ell}{m}
$$

and have the explicit representation

$$
\begin{equation*}
A_{m, \ell}(\lambda)=\sum_{j=0}^{\ell}(-1)^{j}\binom{m+1}{j}(\ell+\lambda-j)^{m} \tag{3.3}
\end{equation*}
$$

(see [10, Lemma 2.2 (v) and (iii)]). Denoting by $\lfloor z\rfloor$ the largest integer less than or equal to $z$ and by $\{z\}$ the integer part of $z \in \mathbb{R}$ (such that $z=\lfloor z\rfloor+\{z\}$ ) we have

$$
L_{d}(x)=\frac{\sqrt{d}}{(d-1)!} \sum_{j=0}^{\lfloor(d+x) / 2\rfloor}(-1)^{j}\binom{d}{j}\left(\frac{d+x}{2}-j\right)^{d-1}
$$

By equation (3.3) we obtain the representation

$$
L_{d}(x)=\frac{\sqrt{d}}{\Gamma(d)} A_{d-1,\lfloor(d+x) / 2\rfloor}(\{(d+x) / 2\})
$$

Gawronski and Neuschel [10, Theorem 4.3] proved, for $k \geq 3$, the asymptotic relation

$$
\begin{align*}
& \sqrt{\frac{m+1}{12}} \frac{1}{m!} A_{m, \ell}(\lambda) \\
& \quad=\frac{1}{\sqrt{2 \pi}} e^{-t^{2} / 2}\left(1+\sum_{\mu=1}^{\lfloor(k-2) / 2\rfloor} \frac{p_{4 \mu}(t)}{(m+1)^{\mu}}\right)+o\left(\frac{1}{(m+1)^{(k-2) / 2}}\right) \tag{3.4}
\end{align*}
$$

as $m \rightarrow \infty$ uniformly in $\ell \in \mathbb{Z}$, with explicitly computable even polynomials $p_{4 \mu}$ of the quantity

$$
t=\left(\ell+\lambda-\frac{m+1}{2}\right) \sqrt{\frac{12}{m+1}}
$$

the degrees of which are at most $4 \mu$. We conjecture that (3.4) holds uniformly in the variable $\lambda$. If so the following conjecture would be true.

Conjecture 3.2. For $d \in \mathbb{Z}, k \geq 3$, and $-d \leq x \leq d$, the limit (3.1) satisfies the asymptotic relation

$$
L_{d}(x)=\sqrt{\frac{6}{\pi}} e^{-3 x^{2} /(2 d)}\left(1+\sum_{\mu=1}^{\lfloor(k-2) / 2\rfloor} \frac{p_{4 \mu}\left(\sqrt{\frac{3}{d}} x\right)}{d^{\mu}}\right)+o\left(\frac{1}{d^{(k-2) / 2}}\right)
$$

as $d \rightarrow \infty$. In particular, for $x \in \mathbb{R}$,

$$
\lim _{d \rightarrow \infty} L_{d}(\sqrt{d} x)=\sqrt{\frac{6}{\pi}} e^{-3 x^{2} / 2}
$$

## References

[1] Ulrich Abel, Integration von sinc-Produkten mit funktionentheoretischen Methoden (German, with German summary), Math. Semesterber. 61 (2014), no. 2, 153-158, DOI 10.1007/s00591-013-0122-0. MR3265204
[2] Keith Ball, Cube slicing in $\mathbf{R}^{n}$, Proc. Amer. Math. Soc. 97 (1986), no. 3, 465-473, DOI 10.2307/2046239. MR 840631
[3] David Borwein and Jonathan M. Borwein, Some remarkable properties of sinc and related integrals, Ramanujan J. 5 (2001), no. 1, 73-89, DOI 10.1023/A:1011497229317. MR 1829810
[4] David Borwein, Jonathan M. Borwein, and Bernard A. Mares Jr., Multi-variable sinc integrals and volumes of polyhedra, Ramanujan J. 6 (2002), no. 2, 189-208, DOI 10.1023/A:1015727317007. MR 1908197
[5] D. B. de Haan, Exposé de la théorie, des propri'etés, des formules de transformation, et des méthodes d'évaluation des intégrales définies, Amsterdam: C. G. Van der Post, 1862. (Online at http://quod.lib.umich.edu/u/umhistmath/ARL0113.0001.001)
[6] D. B. de Haan, Nouvelles tables d'intégrales défines, Leyden 1867.
[7] D. Evers, Hyperebenenschnitte des vierdimensionalen Würfels, Wissenschaftl. Prüfungsarbeit, Universität Koblenz-Landau, Koblenz, 2010.
[8] Rolfdieter Frank and Harald Riede, Hyperplane sections of the n-dimensional cube, Amer. Math. Monthly 119 (2012), no. 10, 868-872, DOI 10.4169/amer.math.monthly.119.10.868. MR2999590
[9] Rolfdieter Frank and Harald Riede, Die Berechnung des Integral $\int_{-\infty}^{\infty}\left(\prod_{k=1}^{n} \frac{\sin \left(a_{k} x\right)}{a_{k} x}\right)$. $\cos (b x) d x$ (German, with German summary), Math. Semesterber. 61 (2014), no. 2, 145-151, DOI 10.1007/s00591-012-0115-4. MR3265203
[10] Wolfgang Gawronski and Thorsten Neuschel, Euler-Frobenius numbers, Integral Transforms Spec. Funct. 24 (2013), no. 10, 817-830, DOI 10.1080/10652469.2012.762362. MR3171995
[11] Douglas Hensley, Slicing the cube in $\mathbf{R}^{n}$ and probability (bounds for the measure of a central cube slice in $\mathbf{R}^{n}$ by probability methods), Proc. Amer. Math. Soc. 73 (1979), no. 1, 95-100, DOI 10.2307/2042889. MR512066
[12] Georg Polya, Berechnung eines bestimmten Integrals (German), Math. Ann. 74 (1913), no. 2, 204-212, DOI 10.1007/BF01456040. MR 1511759

Department MND, Technische Hochschule Mittelhessen, Wilhelm-Leuschner-Strasse
13, 61169 Friedberg, Germany
Email address: ulrich.abel@mnd.thm.de

