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EXISTENCE RESULTS OF TOTALLY REAL IMMERSIONS

AND EMBEDDINGS INTO CN

MARKO SLAPAR AND RAFAEL TORRES

(Communicated by Filippo Bracci)

Abstract. We prove that the existence of totally real immersions of manifolds
is a closed property under cut-and-paste constructions along submanifolds in-

cluding connected sums. We study the existence of totally real embeddings for
simply connected 5-manifolds and orientable 6-manifolds and determine the
diffeomorphism and homotopy types. We show that the fundamental group
is not an obstruction for the existence of a totally real embedding for high-
dimensional manifolds in contrast with the situation in dimension four.

1. Introduction and main results

In this paper, we are interested in the following kind of maps.

Definition 1. Let MN be a closed smooth N -manifold and let J denote the stan-
dard complex structure on the tangent bundle of CN . An immersion MN → CN is
totally real if the tangent bundle TMN contains no complex lines, i.e., if

(1.1) TMN ∩ JTMN = {0}

at all points of TMN . An embedding MN ↪→ CN that satisfies (1.1) is called a
totally real embedding.

A canonical problem is to distinguish between those manifolds that admit totally
real immersions and the ones who admit totally real embeddings. This dichotomy
is already somewhat interesting in the case of manifolds with simple topology. For
example, every N -sphere SN admits a totally real immersion into CN , yet no totally
real embedding exists if N > 3; see Gromov [8, p. 193], Stout-Zame [23]. We occupy
ourselves with the study of the distinction of the maps of Definition 1 for a large class
of manifolds in this paper. Necessary and sufficient topological conditions for the
existence of totally real immersions and embeddings have been studied by Gromov
[7], Wells [26], Audin [2], Forstneric̆ [5], Gong [6], and Jacobowitz–Landweber [11]
among several other mathematicians (see Section 2).

Our first two theorems state that the existence of a totally real immersion is a
property which is closed under certain fundamental cut-and-paste constructions of
manifolds along submanifolds using a trivial framing; please see Remark 1. The
reader is directed to [19, Section 2] and [18, Section 1] for the precise definitions of
the cut-and-paste operations that we use in this paper.
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Theorem A. Let MN be a closed smooth N-manifold that admits a totally real
immersion into CN and let ı : Sp × DN−p ↪→ MN be a smooth embedding for
0 ≤ p ≤ 2. The N-manifold

(1.2) M̂N := MN\ı(Sp ×DN−p) ∪ (Dp+1 × SN−p−1)

that is obtained by performing surgery along ı(Sp × {0}) admits a totally real im-

mersion M̂N → CN .

Theorem B. Let MN
1 and MN

2 be closed smooth oriented N-manifolds that admit a

totally real immersion into CN . There is a totally real immersion MN
1 #MN

2 → CN .

A circle has a totally real embedding into C and every closed orientable surface
admits a totally real immersion into C2, yet the 2-torus is the only orientable closed
surface that admits a totally real embedding. Ahern–Rudin [1] constructed an
explicit totally real embedding S3 ↪→ C

3 and Forstneric̆ showed that every closed
orientable 3-manifold admits a totally real embedding into C3 [5, 1.4 Theorem].
Jacobowitz–Landweber have shown that a necessary and sufficient condition for a
closed smooth orientable 4-manifold M4 to admit a totally real immersion into C4

is the vanishing of its first Pontrjagin class p1(M
4) [12, Corollary 4.1]. Our next

result will address the situation in dimension five using the classification of closed
simply connected 5-manifolds of Barden [3] and Smale [22]. A smooth manifold
MN is irreducible if for every connected sum decomposition MN = M1#M2, either
M1 or M2 is diffeomorphic to the n-sphere. The nontrivial 3-sphere bundle over
the 2-sphere is denoted by S3×̃S2.

Theorem C. Every closed smooth simply connected 5-manifold M5 admits a totally
real immersion

(1.3) M5 → C
5.

Let M5 be an irreducible simply connected 5-manifold. There is a totally real em-
bedding

(1.4) M5 ↪→ C
5

if and only if

(1.5) M5 ∈ {SU(3)/ SO(3), S2 × S3, S3×̃S2}

up to diffeomorphism.

The 5-sphere is the only irreducible simply connected 5-manifold that does not
admit a totally real embedding into complex 5-space. A complete list of simply
connected 5-manifolds that admit such an embedding is given in Section 3.2 and it
includes the following set of examples.

Corollary D. Let M5 be a closed smooth simply connected 5-manifold with torsion-
free second homology group H2(M

5;Z) and suppose k ∈ N. There is a totally real
embedding

(1.6) M5 ↪→ C
5

if and only if M5 is diffeomorphic to

(1.7) S3×̃S2#(2k − 2)(S2 × S3)
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if w2(M
5) �= 0 and to

(1.8) (2k − 1)(S2 × S3)

otherwise.

The homotopy type of a closed simply connected 5-manifold determines its dif-
feomorphism class [3, Section 2]. This is no longer the case in dimension six, where
closed homotopy equivalent 6-manifolds need not be homeomorphic. Building on
results of Wall [25], our next theorem states in terms of characteristic classes, the
necessary and sufficient conditions for the existence of the maps of Definition 1
for 6-manifolds. The symbol χ(MN ) stands for the Euler characteristic of the
N -manifold MN .

Theorem E. Let M6 be a closed smooth orientable 6-manifold without 2-torsion
in H3(M ;Z). There is a totally real immersion

(1.9) M6 → C
6

if and only if the first Pontrjagin class satisfies p1(M
6) = 0.

There is a totally real embedding

(1.10) M6 ↪→ C
6

if and only if

(1.11) p1(M
6) = 0 = χ(M6).

Results of Dehn [4], Kervaire–Milnor [19], and Gromov [7] imply that there is
a totally real immersion MN (G) → CN of a closed orientable N -manifold MN (G)
with prescribed finitely presented fundamental group π1(M

N (G)) = G for every
N ≥ 4. However, the fundamental group does impose a restriction for the existence
of a totally real embedding of a 4-manifold into C4. Indeed, an argument due to
Wells [26] shows that the Euler characteristic of such a 4-manifold must be zero,
while Poincaré duality shows that there is a myriad of choices of finitely presented
groups G that force the Euler characteristic of a closed orientable 4-manifoldM4(G)
to be strictly positive. Our next result shows that this is not the case in higher
dimensions.

Theorem F. Let G be a finitely presented group. There is a totally real immersion

(1.12) M4(G) → C
4

of a given closed smooth orientable 4-manifold M4(G) with fundamental group iso-
morphic to G.

There is a totally real embedding

(1.13) MN (G) ↪→ C
N ,

where MN (G) is a given closed smooth N-manifold with fundamental group iso-
morphic to G and for every N ≥ 5.

The structure of the paper is as follows. Classical and new existence results on
totally real immersions and embeddings which we build upon to prove the results
presented in the introduction are collected in Section 2. A proof of Theorem A
and Theorem B is given in Section 3.1. Theorem C and its corollary are proven
in Sections 3.2 and 3.3, respectively, while Theorem E is proven in Section 3.4 and
Theorem F in Section 3.5. Section 4 contains some results addressing the existence
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of more general immersions with respect to the ones considered in Definition 1 (cf.
[11]).

2. Totally real immersions and embeddings

Wells showed that if an N -manifold MN admits a totally real immersion into
CN in the sense of Definition 1, then its complexified tangent bundle

(2.1) CTMN := TMN ⊗ C

is trivial [26]. Gromov proved that if CTM is trivial, then such an immersion exists
by using convex integration in [7] (cf. [11, Theorem 1.2]).

Theorem 1 (Wells [26], Gromov [7]). There is a totally real immersion MN → C
N

if and only if CTMN is a trivial bundle of rank N .

Let εk be a trivial rank k bundle over MN . A smooth N -manifold MN is
stably-parallelizable if the Whitney sum TMN ⊕ ε1 is a trivial bundle. If the
bundle TMN ⊕ ε1 is trivial, then so is its complexification CTMN [11, Lemma 1.2].
Therefore, Theorem 1 has the following immediate consequence.

Corollary 1. Every stably-parallelizable manifold MN admits a totally real im-
mersion into CN .

Audin studied conditions under which the product of manifolds admits a totally
real immersion whenever each of the factors does [2, 6.2].

Proposition 1 (Audin [2, 6.2.3. Remarque]). Suppose there exist a totally real
immersion XN → CN and a totally real embedding Y M → CM . There is a totally
real embedding

(2.2) XN × Y M ↪→ C
N × C

M ∼= C
N+M .

Our next result extends her results to a more general case of fiber bundles.

Proposition 2. Let XN be a closed smooth orientable N-manifold with trivial
complexified tangent bundle CTXN . Let Y N+k be the total space of a principal
k-torus bundle for k ∈ N

(2.3) T k ↪→ Y N+k π−→ XN .

There exists a totally real immersion

(2.4) Y N+k → C
N+k.

Notice that the converse to the conclusion of Proposition 2 does not hold as
exemplified by S1 ↪→ S5 → CP

2. Moreover, the conclusion of Proposition 2 can be
strengthened to cover embeddings.

Proof. The tangent bundle of the total space of a smooth fiber bundle can always
be written as the Whitney sum of the horizontal and the vertical bundle [24], and
in the case of principal bundles, the vertical bundle can be canonically trivialized
using the group action. The tangent bundle of Y N+k can thus be written as

(2.5) TY N+k ∼= π∗TXN ⊕ εk,

where εk is a trivial rank k bundle over Y N+k whose elements are tangent to the
torus fibers. Its complexification is

(2.6) CTY N+k = TY N+k⊗C = (π∗TXN⊕εk)⊗C = (π∗TXN⊗C)⊕(Y N+k×C),
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which is trivial since CTXN is assumed to be trivial. Theorem 1 implies that there
is a totally real immersion Y N+k → CN+k. �

Recall that the Kervaire semi-characteristic of a closed smooth n-manifold MN

of dimension N = 2k + 1 for k ∈ N is defined as

(2.7) χ̂Z/2(M
N ) :=

k∑
i=0

dimHi(MN ;Z/2)mod2

by Lusztig–Milnor–Peterson [17].

Theorem 2 (Audin [2, 0.4 Proposition, 0.5 Théorème, 0.6 Corollaire]). Let MN be
a closed smooth connected orientable N-manifold of dimension and suppose there
is a totally real immersion MN → CN .

(A) Suppose N is even. There is a totally real embedding MN ↪→ CN if and only
if χ(MN ) = 0.

(B) Suppose N = 4k+1 for k ∈ N. There is a totally real embedding MN ↪→ C
N

if and only if χ̂Z/2(M
N ) = 0.

We finish the section with the following sets of examples.

Proposition 3. Let M5 be a closed smooth simply connected 5-manifold with sec-
ond Stiefel–Whitney class w2(M

5) = 0.
The manifold M5 is stably-parallelizable and there is a totally real immersion

M5 → C5.
There is a totally real embedding M5 ↪→ C5 if and only if M5 is parallelizable.

Proof. A result of Hirsch states that an n-manifold M is stably-parallelizable if
and only if M is orientable and it immerses into Rn+1 [10] (cf. [8, Section 1.1.3]).
Barden has shown a closed simply connected 5-manifold admits an immersion into
R6 if and only if its second Stiefel–Whitney class vanishes [3, Lemma 2.4]. The
existence of the totally real immersion now follows from Corollary 1.

Item (B) of Theorem 2 implies that there exists a totally real embedding of M5

into C
5 if and only if the Kervaire semi-characteristic χ̂Z/2(M

5) = 0. Kervaire has
shown in [14] that the only obstruction for a stably-parallelizable odd-dimensional
manifold to be parallelizable, is the vanishing of the Kervaire semi-characteristic
provided that the dimension is not one, three, or seven. �

Smale’s [22] and Barden’s [3] classification of closed simply connected 5-manifolds
implies that a manifold of Proposition 3 is diffeomorphic to a connected sum

(2.8) S5#(k − 1)(S2 × S3)#(k1 − 1)Mpk
1
# · · ·#(ki − 1)Mpk

i

for k, k1, . . . , kj ∈ N, where each manifold Mpk
i
has H2(Mpk

i
;Z) = Z/pki ⊕Z/pki and

w2(Mpk
i
) = 0; see Table 1. In particular, the manifold (2.8) admits a totally real

embedding into complex 5-space if and only if k is a positive even number.
Appealing to another classification result due to Smale [22] we obtain the fol-

lowing six-dimensional examples.

Proposition 4. Every closed smooth 2-connected 6-manifold M6 admits a totally
real immersion

(2.9) M6 → C
6
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and there is a totally real embedding

(2.10) M6 ↪→ C
6

if and only if M6 is diffeomorphic to S3 × S3.

Proof. Smale [22] has shown that a closed smooth 2-connected 6-manifold M is
diffeomorphic to S6 or to a connected sum n(S3 × S3) of n copies of the product
of two 3-spheres for n ∈ N. Since the connected sum of two stably-parallelizable
manifolds is stably-parallelizable, it follows that every closed smooth 2-connected 6-
manifold is stably-parallelizable. Corollary 1 implies that the totally real immersion
(2.9) exists for every such 6-manifold. Theorem 2 and Smale’s cited classification
result imply that there is a totally real embedding (2.10) if and only if M6 is
diffeomorphic to S3 × S3. We point out that Ahern–Rudin have given an explicit
construction of a totally real embedding S3 ↪→ C

3 [1] that can be used to construct
a totally real embedding of the product of two 3-spheres into C6 (cf. [2, 6.2.3
Remarque]). �

3. Proofs

3.1. Proof of Theorem A and Theorem B. We first show that the manifold

(3.1) M̂N := MN\ı(S2 ×DN−2) ∪ (D3 × SN−3)

that is obtained by performing surgery along ı(S2 × {0}) admits a totally real

immersion M̂N → CN for clarity purposes, and then discuss the corresponding
generalization to the cases p = 0, 1. Theorem 1 states that we need to show that
CTM̂N is trivial. Set S := ı(S2 × {0}) and let {e1, e2, e3, . . . , eN} be sections
that trivialize the bundle CTMN . We can assume that along the 2-sphere S,
the elements {e1, e2} give a trivialization of CTS and the elements {e3, . . . , eN}
trivialize the normal bundle NS of S. This is justified by the following argument.
Let {f1, f2, f3, . . . , fN} be nowhere zero sections of CTMN |S , defined over S, so
that {f1, f2} trivialize CTS and {f3, . . . , fN} trivialize NS. There exists a map

(3.2) A : S → GL(N,C),

so that fi = Aei for i = 1, 2, . . . , n. Since π2(GL(N,C)) = 0, there is a homotopy
At, so that At = A near t = 0 and At = I near t = 1. We can use this homo-
topy to connect the trivialization {f1, f2, f3, . . . , fN} over S with the trivialization
{e1, e2, e3, . . . , eN} outside a neighborhood of S.

Let now W be the standard cobordism between MN and M̂N that is obtained
by attaching an N +1-dimensional 3-handle H := D3×DN−2 to MN × [0, 1] along
MN × {1} via the gluing map iS2×DN−2 × {1}. We proceed to show that CTW is
a trivial bundle. Let e be an inward normal vector field to the boundary sphere
S = S2 × {0} in the core D := D3 × {0} of the handle. Since π2(GL(3,C)) = 0,
we can extend {e, e1, e3} to a trivialization of CTD. We can also trivially extend
{e3, . . . , eN} to a nonzero trivialization of the normal bundle of D in the handle
H; recall π2(O(N − 2)) = 0 and there are no framing issues attaching 3-handles.
Since M ∪D is a deformation retract of W , {e, e1, e2, e3, . . . , eN} can be extended

to give a trivialization of CTW . Since along M̂N = ∂+W , the tangent bundle

TW is a Whitney sum TM̂N ⊕ ε1 with a trivial line bundle ε1, we conclude that
CTM̂N ⊕(ε1⊗C) is trivial. Since CTM̂N is stably trivial, then it is a trivial bundle
[11, Lemma 1.2].
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Remark 1. Small tweaks to the proof of Theorem A yield the same conclusion for
surgeries performed to MN along

(3.3) Sp ×Dn−p ↪→ Mn

for p = 0, 1 whose normal bundle over the handle is trivial. In these cases there are
two choices of framings π0(O(N)) = π1(O(N − 1)) = Z/2 (except for N = 3 when
π1(O(2)) = Z). For exactly one choice of framing, we can extend the trivialization
of the normal bundle from the boundary of the core of the handle to its core as in
the previous proof.

The above remark in the case p = 0 yields Theorem B as a corollary.

3.2. Proof of Theorem C. The case of 5-manifolds with vanishing second Stiefel–
Whitney class was settled in Proposition 3. The classification results of closed
simply connected 5-manifolds up to diffeomorphism of Barden [3] and Smale [22]
imply that any such 5-manifold is difeomorphic to a connected sum of manifolds in
Table 1. We proceed to argue that every manifold in the table has trivial complex-
ified tangent bundle and then invoke Theorem B and Theorem 1 in order to prove
the first part of Theorem C. Therefore, we need to show that the Wu manifold
SU(3)/ SO(3), the nontrivial bundle S3×̃S2, and the manifold Xk with k have triv-
ial complexified tangent bundle. Audin has shown that the Wu manifold admits a
totally real embedding into C

5 [2, Proposition 0.8]. The same conclusion holds for
S3×̃S2 by Proposition 2 since it is the total space of a circle bundle

(3.4) S1 ↪→ S3×̃S2 → CP
2#CP

2,

where the base 4-manifold has trivial complexified tangent bundle by [12, Corol-
lary 4.1] given that its first Pontrjagin class is zero. We now show that CTXk is
a trivial bundle for every value k ∈ N. Let S ↪→ S3×̃S2 be a 2-sphere that repre-
sents 2k-times the generator of the infinite cyclic group H2(S

3×̃S2;Z). Notice that
the normal bundle of S is trivial. The manifold Xk is obtained from S3×̃S2 by
performing the surgery of Theorem A along S and therefore CTXk is trivial. The
claim regarding totally real embeddings into complex 5-space follows immediately
from Theorem 2.

Remark 2. Every closed simply connected 5-manifold is diffeomorphic to a con-
nected sum of manifolds that are listed in Table 1. Such a 5-manifold admits a
totally real embedding into complex 5-space if and only if it is diffeomorphic to

(3.5) S5#δ(S3×̃S2)#(k1 − 1)(S2 × S3)#(k2 − 1)(SU(3)/ SO(3))#M#N

for

(3.6) δ + k1 + k2 +−1 = 0,

where δ ∈ {0, 1}, k1, k2 ∈ N, the manifold M is a connected sum of an arbitrary
number of copies of Mk

p and N is a connected sum of an arbitrary number of copies
of the manifold Xk of Table 1. If the second Stiefel–Whitney class is zero, the
explicit diffeomorphism type is given in (2.8).
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Table 1. Building blocks of simply connected 5-manifolds (k ∈ N)

5-manifold Y H2(Y ;Z) w2(Y ) χ̂Z/2(Y )

S5 0 0 1
S2 × S3 Z 0 0

Mpk Z/pk ⊕ Z/pk 0 1
SU(3)/ SO(3) Z/2 �= 0 0

S3×̃S2 Z �= 0 0

Xk Z/2k ⊕ Z/2k �= 0 1

3.3. Proof of Corollary D. A 5-manifold that satisfies the hypothesis of the
corollary is diffeomorphic to S5 or to a connected sum of copies of S2 × S3 if its
second Stiefel–Whitney class is zero and to a connected sum of S3×̃S2 with copies
of S2 × S3 if its second Stiefel–Whitney class is not zero according to Barden and
Smale aforementioned classification results. Using a Mayer-Vietoris sequence and
the universal coefficients theorem [9], it is immediate to compute

(3.7) χ̂Z/2(S
3×̃S2#(n− 1)(S2 × S3)) = n+ 1mod 2

and

(3.8) χ̂Z/2(n(S
2 × S3)) = n+ 1mod2

for n ∈ N. Item (B) of Theorem 2 implies that a sufficient and necessary condition
for the totally real embedding to exist is for n to be an odd natural number.

3.4. Proof of Theorem E. Set M := M6 and suppose there exists such a totally
real immersion into C6. The triviality of the complexified tangent bundle CTM
implies that c2(CTM) = 0. By definition of the Pontrjagin classes

(3.9) pi(M) = c2i(CTM),

it follows that p1(M) = 0 if and only if c2(CTM) = 0. A closed orientable 6-
manifold M without 2-torsion in H3(M ;Z) admits an almost-complex structure
[20, Proposition 8], (cf. [25, Section 7]). The complexified tangent bundle of an
almost-complex manifold M has the canonical eigenspaces decomposition

(3.10) CTM = T 1,0M ⊕ T 0,1M,

into the holomorphic T 1,0M and antiholomorphic T 0,1M tangent bundles of M .
The Chern classes of these bundles satisfy the equality

(3.11) ci(T
1,0M) = (−1)ici(T

0,1M).

Suppose now that p1(M) = 0. To prove the converse, we claim

(3.12) ci(CTM) = 0

for i ∈ {1, 2, 3}. The conclusion of Theorem E readily follows from (3.12) since a
complex vector bundle of rank greater than or equal to 3 over a closed orientable
6-manifold is trivial if and only if its Chern classes {c1, c2, c3} vanish [21, p. 416].
We proceed to show that these characteristic classes are zero. From (3.9), we see
that our hypothesis implies c2(CTM) = 0. Let us now show that c1(CTM) is zero.
It follows from using the Whitney product formula for Chern classes and (3.10)
that

(3.13) c1(CTM) = c1(T
1,0M ⊕ T 0,1M) = c1(T

1,0M) + c1(T
0,1M).
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Identity (3.11) implies c1(CTM) = 0. Similarly, the Whitney product formula and
identity (3.11) imply

(3.14) c3(CTM) = c1(T
1,0M) ∪ c2(T

0,1M) + c2(T
1,0M) ∪ c1(T

0,1M) = 0.

We conclude that (3.12) holds and it follows that CTM is trivial. Theorem 1 implies
the existence of the totally real immersion (1.9) as claimed.

The claims about the existence of a totally real embedding now follow from the
first part of the theorem and Item (A) of Theorem 2.

3.5. Proof of Theorem F: Examples with arbitrary fundamental group.
Classical results of Dehn [4] and Kervaire–Milnor [19] imply that for any N ≥ 4
and any finitely presented group G there exists a closed smooth stably-parallelizable
N -manifold MN (G) such that the fundamental group π1(M

N (G)) is isomorphic to
G. In particular, the complexified tangent bundle CTMN (G) is trivial and a result
of Gromov [7] implies that there is a totally real immersion MN (G) → CN for
every N ≥ 4 as it is stated in Theorem 1. We now proceed to show the existence
of a totally real embedding into C

N . For the values N = 4 + 2(k1 − 1) + 3k2
with k1, k2 ∈ N the claim follows immediately by invoking Proposition 1 on the
product of the 4-manifold M4(G) with (k1 − 1) copies of S2 and k2 copies of S3.
We apply Theorem 2 to deal with the cases N even and N = 4k + 1. A standard
computation using a Mayer-Vietoris sequence and the universal coefficients theorem
(see [9]) implies that either χ̂Z/2(M

5(G)) = 0 or χ̂Z/2(M
5(G)#S2 × S3) = 0.

Since π1(M
5(G)) = π1(M

5(G)#S2 × S3), we conclude that the claim for N = 5
holds. Using product manifolds as before, we conclude that the claim regarding the
existence of a totally real embedding holds for odd N . For even values of N , the
argument is similar. A Mayer-Vietoris sequence reveals that the Euler characteristic
of MN (G) is an even number. Taking connected sums of MN (G) with copies of
S3×SN−3, and S2×SN−2, one obtains a manifold with fundamental group G and
zero Euler characteristic, which we continue to call MN (G).

Remark 3. Johnson–Walton [13, Theorem A] pointed out that work of Kervaire
[14, 15] implies that the manifolds of Theorem F are parallelizable.

4. Examples of generic immersions

In this last section, we mention some examples of the following kind of immer-
sions.

Definition 2. Let n be a nonnegative integer and k ∈ N. An immersion

(4.1) π : M2n+k → C
n+k

is said to be generic if at each point p ∈ M the real vector space

(4.2) π∗TM ∩ Jπ∗M

has dimension 2n.

Definition 2 recovers the notion of totally real immersions of Definition 1 for the
values (n, k) = (0, N). A result of Hirsch [10] states that the bundle TM2n+1 ⊕ ε
is trivial if and only if M2n+1 immerses in R2n+2. Since every real hypersurface
in C

n+1 is automatically generic, any closed stably-parallelizable (2n+1)-manifold
has a generic immersion into Cn+1 (cf. [11, Remark 4]). This yields the following
examples of generic immersions.
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Corollary 2. A closed simply connected 5-manifold has a generic immersion into
C3 if and only if its second Stiefel–Whitney class is zero, i.e., if the 5-manifold is
stably-parallelizable.

For every n ≥ 2 and every finitely presented group G there is a generic immersion

(4.3) M2n+1(G) → C
n+1

of a closed smooth orientable (2n+1)-manifold M2n+1(G) with fundamental group
isomorphic to G.
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