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KLEIN’S FORMULAS AND ARITHMETIC OF TEICHMÜLLER

MODULAR FORMS
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(Communicated by Benjamin Brubaker)

Abstract. We apply the arithmetic theory of Teichmüller modular forms to
calculating constants in relations, which are connected with Klein’s (amazing)
formulas, between certain invariants of canonical curves of genus g = 3, 4.

1. Introduction

Klein’s formulas connect certain invariants of canonical curves of genus g = 3, 4
with the product θg of even theta constants for their Jacobian varieties. In this
paper, motivated by results of Lachaud, Ritzenthaler, and Zykin [8, 9], we apply
the arithmetic theory of Teichmüller modular forms [3, 4] to the calculation of the
constants in Klein’s formulas. Further, we describe θ4 by derivatives of Schottky’s
modular form J , which is a Siegel modular form of degree 4 with zero divisor as
the Jacobian locus. We obtain identities (up to a sign) between modular forms and
invariants for canonical curves of genus 3, 4 by using the fact that these identities
hold up to a nonzero constant (cf. [7, 10]) and then showing that both sides are
integral and primitive.

First, we consider a smooth complex curve CP ⊂ P2
C
of genus 3 defined as P = 0,

where P is a homogeneous quartic polynomial. Let (Ω1,Ω2) be the period 3 × 6
matrix of canonical regular 1-forms on CP such that Z = Ω−1

1 Ω2 belongs to the
Siegel upper half space of degree 3. Then in [7], Klein proved that the discriminant
Disc(P ) of P satisfies

Disc(P )2 = c1
θ3(Z)

det(Ω1)18

for a certain constant c1 independent of CP . In [8, 9], Lachaud, Ritzenthaler, and
Zykin proved that

c1 =
(2π)54

228

by big calculations (using the software MAGMA) of theta constants for the Jacobian
variety of a special CP which is isogenous to the product of three elliptic curves.
Their work is also closely related to a conjecture of Serre [13] on a refinement of
the Torelli theorem. In this paper, we give another proof of this result by showing
that the invariant Disc equals (up to a sign) the integral and primitive Teichmüller
modular form proportional to

√
θ3.
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Second, we show that this method can also be applied to determine the constant
c2 in the formula by Matone and Volpato [10, Theorem 3.4]

det

(
(1 + δij)

∂J(Z)

∂zij

)2

1≤i,j≤4

= c2 · θ4(Z),

where J denotes Schottky’s modular form and Z = (zij) are the period matrices of
canonical curves of genus 4. By using the arithmetic property of the Teichmüller
modular form

√
θ4 and results of Brinkmann and Gerritzen [1,2] on the lowest term

of J , we determine c2. From this result, we can obtain a complete form of Klein’s
amazing formula (cf. [7, p. 462]) such as

Δ(C)2 · T (C)8 =
(2π)272θ4(Z)

2120 det(Ω1)68
,

where C ⊂ P
3
C

is a canonical curve, and Δ(C) and T (C) denote its (integral,
primitive) discriminant and tact invariant respectively.

2. Preliminaries

2.1. A canonical curve is a proper smooth curve embedded into the projective space
by the linear system associated with its canonical divisor. If a proper smooth curve
C is not hyperelliptic, then a basis of the space H0(C,ΩC) of regular 1-forms on C
gives a closed immersion C ↪→ Pg−1 which defines a canonical curve. Each canonical
curve of genus 3 is given by a quartic curve in P2, and that of genus 4 is given by
the intersection of a quadric surface and a cubic surface in P

3.

2.2. For an integer g > 1, let Mg and Ag be the moduli stacks of proper smooth
curves of genus g and of principally polarized abelian varieties of dimension g re-
spectively. Then there exists the Hodge line bundle λ on these stacks whose fiber
is spanned by the exterior product of a basis of regular 1-forms. Let R be a com-
mutative ring with unity, and let h be an integer. Then Siegel (resp. Teichmüller)
modular forms of degree g and weight h over R are defined as global sections of
λ⊗h on Ag ⊗R (resp. Mg ⊗R). The pullback by the Torelli map

τ : Mg → Ag

gives an R-linear map τ∗ between the R-modules of Siegel modular forms and of
Teichmüller modular forms over R which preserves their degree and weight. These
forms are called integral if R = Z and given as elements of OS if λ is trivialized on
a scheme S over Ag ⊗R (resp. Mg ⊗R).

By taking regular 1-forms ωi = dζi/ζi (1 ≤ i ≤ g) on Mumford’s abelian scheme
of dimension g [11] formally represented as

{(ζ1, . . . , ζg) ∈ G
g
m}/ 〈 (qij)1≤i≤g | 1 ≤ j ≤ g〉 ,

the trivialization of λ by ω1 ∧ · · · ∧ ωg gives rise to the Fourier (qij-) expansion for
Siegel modular forms of degree g. For variables α±1, . . . , α±g, put

A0 = Z

[
αk,

1

αl − αm
(k, l,m ∈ {±1, . . . ,±g}, l �= m)

]
,

and let

A = A0[[β1, . . . , βg]]
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be the ring of formal power series over A0 of variables β1, . . . , βg. Then it is shown
in [4, Theorem 3.5] that there exists a generalized Tate curve Cg which is a stable
curve of genus g over A and has the following properties:

• The curve Cg is a universal deformation over A of the singular projective
line obtained as αi = α−i (1 ≤ i ≤ g) in P1

A0
and is Mumford uniformized

by 〈(
αi α−i

1 1

)(
1 0
0 βi

)(
αi α−i

1 1

)−1
∣∣∣∣∣ 1 ≤ i ≤ g

〉
.

• The Jacobian of Cg becomes Mumford’s abelian scheme

G
g
m /〈(pij)1≤i≤g | 1 ≤ j ≤ g〉 ,

where pij ∈ A are called the universal periods whose lowest terms become

βi (if i = j) or
(αi − αj)(α−i − α−j)

(αi − α−j)(α−i − αj)
(if i �= j).

Then the evaluation of Teichmüller modular forms of degree g over R on Cg gives
elements of A⊗R, and this evaluation of the images by τ∗ of Siegel modular forms
is obtained by putting qij = pij on their Fourier expansions.

Let

θg(Z) =
∏

a, b ∈ {0, 1/2}g

4atb : even

∑
n∈Zg

exp

(
2π

√
−1

[
1

2
(n+ a)Zt(n+ a) + (n+ a)tb

])

be the product of even theta constants (i.e., theta null-values) of degree g, where Z
belongs to the Siegel upper half space Hg of degree g. For g ≥ 3, θg is an integral
Siegel modular form of degree g and weight 2g−2(2g + 1). Then in [14, Theorem
1], Tsuyumine proved that τ∗(θg) has a square root as a Teichmüller modular form
over C. Put

Ng =

{ −228 (g = 3),

22
g−1(2g−1) (g ≥ 4).

Then using the above expansion theory of Teichmüller modular forms, it is shown
in [3, Theorem 4.4] and [4, Corollary 4.6] that μg =

√
τ∗(θg)/Ng is an integral Te-

ichmüller modular form which is also primitive, i.e., not congruent to 0 modulo any
prime. Actually, [3, Proposition 4.3] implies that the lowest term of the expansion
of μg as an element of A is primitive.

3. Genus 3 case

3.1. For a homogeneous polynomial P of x1, x2, x3 of degree 4, define the discrim-
inant Disc(P ) of P as

Disc(P ) = 2−14 · Res
(
∂P

∂x1
,
∂P

∂x2
,
∂P

∂x3

)
,

where Res denotes the multivariate resultant. It is known that Disc(P ) is an integral
and primitive polynomial of the coefficients of P and that Disc(P ) = 0 if and only
if ∂P/∂xi (i = 1, 2, 3) have a common nonzero root (cf. [8, 2.2] and [9, 2.1]). If
Disc(P ) �= 0, then the curve CP ⊂ P2 defined as P = 0 is a smooth curve of genus
3. For each f = xi, let ωf be a 1-form on CP defined as

dP ∧ ωf = f (−x1dx2 ∧ dx3 + x2dx1 ∧ dx3 − x3dx1 ∧ dx2) ,
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namely,

ωf =
f · (xjdxk − xkdxj)

∂P/∂xi
if ∂P/∂xi �= 0 and (ijk) is even.

From this expression, one can see that ωxi
(1 ≤ i ≤ 3) are well defined and give a

basis of H0 (CP ,ΩCP
). We call ωxi

the canonical regular 1-forms on CP .
Let X4 be the affine space over Z consisting of homogeneous polynomials P

of x1, x2, x3 of degree 4, and let Xo
4 be its Zariski open subspace on which P is

irreducible and Disc(P ) is invertible. Then the correspondence P 
→ CP gives rise
to a morphism

φ : Xo
4 → M3

whose image is the locus of nonhyperelliptic curves. Using invariant theory, Klein
proved in [7] that the pullback (τ ◦ φ)∗ (θ3) of θ3 by τ ◦ φ : Xo

4 → A3 is a multiple
by a nonzero constant of the square Disc2 of Disc. Further, Lachaud, Ritzenthaler,
and Zykin [8, 9] calculated this constant and noticed that their result is equivalent
to the following fact, which we will show using the arithmetic property of μ3:

Theorem 3.1 (cf. [9, Remark 2.2.4]). We have

φ∗ (μ3) = ±Disc

under the trivialization of λ by ωx1
∧ ωx2

∧ ωx3
.

Proof. Note that φ∗(μ3) and Disc are integral polynomials of xi and that they are
seen to be proportional. Further, Disc is primitive, and hence there exists an integer
c such that

φ∗ (μ3) = c ·Disc · (ωx1
∧ ωx2

∧ ωx3
)⊗9 .

Since μ3 is primitive on M3 and φ is dominant over all the special fibers of Spec(Z),
φ∗ (μ3) is not congruent to 0 modulo any prime. Therefore, φ∗ (μ3) is also primitive,
and hence c = ±1. �

3.2. We apply Theorem 3.1 to re-prove the following main result of [8].

Corollary 3.2 (cf. [8, Theorem 4.3.1 and Corollary 4.3.3] and [9, Theorem 2.2.3]).
Let CP ⊂ P2

C
be a canonical complex curve as above, and let γ1, . . . , γ6 be a sym-

plectic basis of H1 (CP ,Z) for the intersection pairing. Put

Ω = (Ω1,Ω2) =

(∫
γj

ωxi

)
i,j

and Z = Ω−1
1 Ω2 ∈ H3. Then

Disc(P )2 =
(2π)54 · θ3(Z)

228 · det(Ω1)18
.

Proof. As is mentioned in subsection 2.2, μ3 =
√
−τ∗(θ3)/228, and hence the as-

sertion follows from Theorem 3.1 and that

ω1 ∧ ω2 ∧ ω3 =
(
2π

√
−1
)3

dz1 ∧ dz2 ∧ dz3

under the identification by ζi = exp
(
2π

√
−1zi

)
of Mumford’s abelian scheme of

dimension 3 over C with the complex torus C3
/(

Z3 + Z3 · Z
)
, where (z1, z2, z3)

are the natural coordinates on C3. �
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4. Genus 4 case

4.1. For a multiple n of 4, let

Θn(Z) =
∑

(λ1,...,λ4)∈L4
2n

exp

⎛
⎝π

√
−1

4∑
i,j=1

〈λi, λj〉zij

⎞
⎠ (Z = (zij) ∈ H4)

be the theta series for the lattice

L2n =

{
(a1, . . . , a2n) ∈ R

2n

∣∣∣∣∣ 2ai, ai − aj ,
1

2

∑
i

ai ∈ Z

}

with standard inner product 〈 , 〉. Then Schottky’s J defined as

J(Z) =
22

32 · 5 · 7
(
Θ4(Z)2 −Θ8(Z)

)
is a Siegel modular form of degree 4 and weight 8 which is represented as an
integral polynomial of theta constants (cf. [5, 6]) and hence is integral. Further, J
is characterized (up to a constant) as a nonzero Siegel modular form of degree 4 of
minimal weight vanishing on the Jacobian locus. Then Brinkmann and Gerritzen
[1,2] proved that the lowest term of (the Fourier expansion of) J for q11, q22, q33, q44
becomes

−216

⎛
⎝ ∏

1≤i<j≤4

q−1
ij

⎞
⎠F · q11q22q33q44.

Here F is an integral polynomial of qij (1 ≤ i < j ≤ 4) which is a (unique up to a
sign) generator of the kernel of the algebra homomorphism

ϕ : Z [qij (1 ≤ i < j ≤ 4)] → Z

[
αk,

1

αl − αm
(k, l,m ∈ {±1, . . . ,±4}, l �= m)

]
given by

ϕ(qij) =
(αi − αj)(α−i − α−j)

(αi − α−j)(α−i − αj)
,

where α±1, ..., α±4 are variables. Actually, F is written as ΔH−G by the following:

Δ =
∏

1≤i<j≤4

(qij − 1),

H =
∏

1≤i<j≤4

qij −

⎛
⎜⎜⎜⎝
∑

1≤i≤4

∏
1 ≤ k < l ≤ 4

k, l �= i

qkl

⎞
⎟⎟⎟⎠+ q12q34 + q13q24 + q14q23,

G = q12q34
∏

1 ≤ i < j ≤ 4
(i, j) �= (1, 2), (3, 4)

(qij − 1)2 + q13q24
∏

1 ≤ i < j ≤ 4
(i, j) �= (1, 3), (2, 4)

(qij − 1)2

+ q14q23
∏

1 ≤ i < j ≤ 4
(i, j) �= (1, 4), (2, 3)

(qij − 1)2.

Put

Sij =
−1

216 · 2π
√
−1

∂J(Z)

∂zij
= − qij

216
∂J

∂qij
(1 ≤ i, j ≤ 4),
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and denote by S the 4×4 symmetric matrix whose (i, j)-components are (1+δij)Sij ,
where δij denotes Kronecker’s delta.

Theorem 4.1. The pullback τ∗(det(S)) of the determinant det(S) of S by the
Torelli map τ is equal to ±μ4, and hence it is an integral and primitive Teichmüller
modular form of degree 4.

Proof. As mentioned in subsection 2.2, [3, Proposition 4.3] implies that the lowest
term of the expansion of μg as an element of A is integral and primitive, and by
[10, Theorem 3.4], τ∗(det(S)) is proportional to μ4 as a Teichmüller modular form.
In the following, we will prove that the lowest term of τ∗(det(S)) as a formal power
series of βi (1 ≤ i ≤ 4) is a primitive element of A0. Then one can see that
τ∗(det(S)) = ±μ4, and hence it is integral and primitive.

Since the expansion τ∗(det(S)) by βi is obtained by putting qij = pij on det(S),

the lowest term of τ∗(det(S)) for βi belongs to A0. Put D =
∏4

k=1 qkk, and for each
1 ≤ i, j ≤ 4, denote by Lij the constant term of (1 + δij)Sij/D for qkk (1 ≤ k ≤ 4)

which belongs to Z
[
q±1
lm (1 ≤ l < m ≤ 4)

]
. Then we prove that the lowest term of

τ∗(det(S)) is primitive by showing that Lij (1 ≤ i, j ≤ 4) form a regular matrix
modulo the above F over any field. Put N =

∏
1≤l<m≤4 qlm. Then this assertion

follows from the fact that det (Lij ·N) is not divided by F as a polynomial of qlm
(1 ≤ l < m ≤ 4) over any field since F/qlm is not a polynomial for any l < m. By
putting qlm = 0 for (l,m) �= (1, 2), (3, 4), we have

F 
→ F ′ def
= (q12 − 1)(q34 − 1)q12q34 − q12q34 = q212q

2
34 − q212q34 − q12q

2
34

and

Lij ·N 
→

⎧⎪⎪⎨
⎪⎪⎩

2F ′ (i = j),
q212q

2
34 − q212q34 ((i, j) = (1, 2)) ,

q212q
2
34 − q12q

2
34 ((i, j) = (3, 4)) ,

−F ′ (otherwise).

Therefore,

det (Lij ·N)


→ det

⎛
⎜⎜⎝

2F ′ q212q
2
34 − q212q34 −F ′ −F ′

q212q
2
34 − q212q34 2F ′ −F ′ −F ′

−F ′ −F ′ 2F ′ q212q
2
34 − q12q

2
34

−F ′ −F ′ q212q
2
34 − q12q

2
34 2F ′

⎞
⎟⎟⎠

≡ q612q
6
34 �≡ 0 mod(F ′),

and hence det (Lij ·N) is not congruent to 0 modulo F over any field. This implies
that the lowest term of τ∗(det(S)) is primitive, and hence Theorem 4.1 follows from
the above argument. �

Corollary 4.2. Let C ⊂ P
3
C
be a canonical complex curve of genus 4 whose Jacobian

variety is represented as a complex torus C4/
(
Z4 + Z4 · Z

)
, where Z = (zij) ∈ H4.

Denote by S(C) the 4 × 4 matrix obtained by putting qij = exp
(
2π

√
−1zij

)
in S.

Then

det (S(C))2 =
(2π)272 · θ4(Z)

2120
.

Proof. This assertion follows from Theorem 4.1 and that μ4 =
√
τ∗(θ4)/2120. �
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4.2. The above results are also applied to calculating the unknown constant in
Klein’s amazing formula [7, p. 462]. Let C ⊂ P3 = {(x1 : x2 : x3 : x4)} be (possibly
singular) curves which are obtained as the intersections of quadric surfaces and
cubic surfaces given by Q = 0 and E = 0 respectively. Then the discriminant
Δ(C) of C is defined as det ((1 + δij)Qij), where Q is given by

∑
1≤i≤j≤4 Qijxixj .

Further, the tact invariant T (C) of C is defined in [12, p. 122] as a polynomial
of the coefficients of Q,E corresponding to the locus over which C are singular.
Especially, we take T (C) as an integral and primitive polynomial. If C is smooth,
then its genus is 4 and there exists a basis of H0 (C,ΩC) which consists of canonical
regular 1-forms ωxi

(1 ≤ i ≤ 4) satisfying

dQ ∧ dE ∧ ωxi
= xi

4∑
j=1

(−1)jxjdx1 ∧ · · · ∧ dxj−1 ∧ dxj+1 ∧ · · · ∧ dx4

on C ⊂ P
3. Then Klein [7, p. 462] (see also [10, Remark 3.6]) states that there

exists a constant d independent of C such that

Δ(C)2 · T (C)8 = d
θ4(Z)

det(Ω1)68
,

where (Ω1,Ω2) is the period matrix of ωxi
(1 ≤ i ≤ 4) for a symplectic basis of

H1(C,Z) such that Z = Ω−1
1 Ω2 ∈ H4.

For d = 2, 3, let Yd be the affine space over Z consisting of homogeneous poly-
nomials of xi (1 ≤ i ≤ 4) with degree d. Then the above discriminant and tact
invariant give integral and primitive polynomials defined on Y2 × Y3, which we de-
note by Δ and T respectively. Let Y o

2,3 be the Zariski open subspace of Y2 × Y3

which consists of (Q,E) satisfying that {Q = 0} ∩ {E = 0} are smooth curves in
P3. Then we have a family of canonical curves of genus 4 over Y o

2,3 with basis of
canonical regular 1-forms ωxi

. Therefore, there exists a natural morphism

ψ : Y o
2,3 → M4

whose image corresponds to the locus of nonhyperelliptic curves of genus 4. Then
Klein’s statement implies that under the trivialization of λ by ωx1

∧ωx2
∧ωx3

∧ωx4
,

ψ∗ (μ4) is a multiple of Δ · T 4 by a nonzero constant. Since ψ is dominant over all
the special fibers of Spec(Z), ψ∗(μ4) is integral and primitive, and hence we have

ψ∗ (μ4) = ±Δ · T 4.

Therefore, as in the proof of Corollaries 3.2 and 4.2, the above constant d can be
determined as

d =
(2π)272

2120
.
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[12] G. Salmon, Traité de géométrie analytique à trois dimensions, Troisième partie, Ouvrage
traduit de l’anglais sur la quatrième édition, Paris, 1892.
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