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A SINGULAR LOCAL MINIMIZER FOR THE VOLUME-

CONSTRAINED MINIMAL SURFACE PROBLEM

IN A NONCONVEX DOMAIN
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Abstract. It has recently been established by Wang and Xia that local mini-
mizers of perimeter within a ball subject to a volume constraint must be spher-
ical caps or planes through the origin. This verifies a conjecture of the authors
and is in contrast to the situation of area-minimizing surfaces with prescribed
boundary where singularities can be present in high dimensions. This result
lends support to the more general conjecture that volume-constrained minimiz-
ers in arbitrary convex sets may enjoy better regularity properties than their
boundary-prescribed cousins. Here, we show the importance of the convexity

condition by exhibiting a simple example, given by the Simons cone, of a sin-
gular volume-constrained locally area-minimizing surface within a nonconvex
domain that is arbitrarily close to the unit ball.

1. Introduction

A central result in the theory of minimal surfaces [S1,S2,BDG,Si,G] is that, in
dimensions n ≥ 8, there can exist singular surfaces minimizing (n− 1)-dimensional
area subject to prescribed boundary conditions: for example, the portion of the
Simons cone [S1] lying within the unit ball B in R

8. This is the Dirichlet or “soap
bubble” problem describing the scenario of a liquid surface spanning a wire frame.
The analogous “Neumann,” or “capillary surface” problem of area-minimization
within Ω subject to a volume constraint, with no prescription of behavior on ∂Ω, is
by contrast somewhat less well understood. In particular, it has been shown using
blowup techniques [Gr,GJ,GMT] that regularity of volume-constrained minimizers
is at least as good as that of minimizers with prescribed boundary, but so far as we
know it is not known whether this result is sharp. Indeed, in [SZ], it was conjec-
tured that for convex domains, volume-constrained minimizers might have better
regularity properties than those subjected to a prescribed-boundary condition.

A more specific conjecture of [SZ] was that in the ball B, the only stable volume-
constrained minimizers are spherical caps or graphs over ∂B (hence real analytic,
by the results of [Gr,GJ,GMT]). In new progress, this latter conjecture concerning
the ball has recently been established in [WX]. However, the general case remains
open. In particular, one may ask whether volume-constrained local minimizers in
a convex domain remain regular in arbitrary dimension n and not just for n ≤ 7.
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In the absence of counterexamples, one might even ask whether volume-constrained
minimizers remain regular for arbitrary domains, irrespective of convexity.

Our modest goal in this note is to answer the second question in the negative,
showing that for nonconvex domains at least, volume-constrained minimizers need
not be regular. Specifically, we show that the Simons cone, though unstable with re-
spect to volume-preserving perturbations in the ball B [SZ], is a volume-constrained
minimizer in a set Ω with ∂Ω arbitrarily close to ∂B in C0 norm.

More precisely, let M be the Simons cone, centered at the origin. Let Ω be a
set consisting of a deformed ball, with boundary defined in polar coordinates r > 0
and ω ∈ S7 by

(1.1) r(ω) := 1 +Kφ
(
d(ω,M ∩ ∂B)

)
,

where d(·, ·) denotes Euclidean distance and φ : [0,∞) → [0,∞) is given by
φ(a) := a2χ(a). The function χ is taken to be a smooth nonnegative cut-off function
vanishing for |a| ≥ 2υ, and 0 < υ � 1 and K 	 1 are suitable positive constants.
Then, we claim that M is area-minimizing in Ω with respect to arbitrary variations
that have boundary on ∂Ω close to M ∩ ∂Ω in the C0 norm.

This implies in particular that M is a singular local minimizer in C0 norm
of the volume-constrained least area problem in Ω. We note that as M is not
the volume-constrained global minimizer in B, it cannot be a volume-constrained
global minimizer for perturbed domains Ω close to B. To exhibit a singular global
volume-constrained minimizer remains an interesting open problem.

2. Strict minimality

Consider the calibration constructed in [BDG] on the ball of radius 2, consisting
of a divergence-free unit vector field X normal to the Simons cone. Let N be the
set contained by the Simons cone, with M = ∂N , for which X|M is the outward
normal. By Gauss-Green, we then have

(2.1) |M ∩ Ω| = −
∫
N∩∂Ω

X · n,

where n is the unit outward normal vector to Ω. Let N ′ ⊂ Ω be a competitor
for which M ′ := ∂N ′ satisfies the condition that M ′ ∩ ∂Ω is C0 close to M ∩ ∂Ω
(= M ∩ ∂B), without necessarily requiring that vol (N ′) = vol (N). Then similarly,
we find that

(2.2)

∫
M ′∩Ω

X · ν = −
∫
N ′∩∂Ω

X · n,

where ν is the outward normal to N ′ on M ′. From |X · ν| ≤ 1, we have that∫
M ′∩Ω

X ·ν ≤ |M ′∩Ω|. Combining (2.1), (2.2), and the last inequality, we see that

(2.3) |M ′ ∩ Ω| ≥ |M ∩ Ω|+
∫
(N\N ′)∩∂Ω

X · n−
∫
(N ′\N)∩∂Ω

X · n.

Finally, observing that M ∩ ∂Ω = M ∩ ∂B so that X · n = 0 on M ∩ ∂Ω, the
construction of the perturbed domain Ω forces X · n > 0 on (N \N ′) ∩ ∂Ω, while
X · n < 0 on (N ′ \ N) ∩ ∂Ω for any N ′ that is C0 close to N near ∂Ω. Thus,
|M ∩Ω| < |M ′ ∩Ω| unless X ≡ ν a.e. on M ′ and N ′ ∩ ∂Ω = N ∩ ∂Ω, with the last
equivalence implying that in fact M ′ ∩ ∂B = M ∩ ∂B. Since M is the only surface
in the foliation having boundary M ∩ ∂B, necessarily we would have M ′ = M .
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We conclude that N is a C0-local minimizer of perimeter in Ω, and in particular it
is a local minimizer with respect to its own volume.

3. Positive second variation

Further insight into our construction may be gained by consideration of the
second variation functional. Following [S1], consider variations M(t) obtained by
flowing distance tη(·) along an outward normal to the set N bounded by M , where
η is a smooth function on M vanishing at the vertex 0 with η(0) = 0, and consider
the perimeter A(t) := |M(t) ∩ Ω| of M(t) within Ω.

Lemma 3.1. The second variation E(η) := A′′(0) is given by

(3.1) E(η) =
∫
M∩Ω

(|∇Mη|2 + |BM |2|η|2) +
∫
M∩∂Ω

1

2
(K − 1)|η|2.

Proof. The standard formula for normal variations of a manifold with boundary
[Si] yields second variation

∫
M∩Ω

(|∇Mη|2 + |BM |2|η|2) for the area of the surface
evolving from the surface with boundary M ∩B at its initial position. Computing
the correction term accounting for area leaving (if K > 1) or entering (if K < 1)
Ω, we obtain (3.1). �

Having introduced the second variation, we now drop the requirements that
η(0) = 0 or that η be regular at 0, as neither of these affects the numerical range
of E . From (3.1), we see that the effect of the deformation Ω of the ball B in
the vicinity of M ∩ ∂B is to introduce the term

∫
M∩∂Ω

1
2 (K − 1)|η|2 penalizing

variation along the boundary, that is, a penalty-type relaxation of the Dirichlet
condition η ≡ 0 on M ∩ ∂B. The associated Euler-Lagrange equations for the
principal eigenvalue, eigenfunction pair μ1, η1 of (3.1) are thus

(3.2)

Lη1 := −ΔMη1 − |BM |2η1 = μ1η1, x ∈ M ∩ Ω,

η1 + 2(K − 1)−1(∂η1/∂nM ) = 0, x ∈ M ∩ ∂Ω,

η1 = 0, x = 0,

where nM denotes the conormal orthogonal to ∂Ω∩M and tangent toM , converging
formally as K → ∞ to the principal eigenvalue equations for the Dirichlet problem.

On a smooth manifold M , one could show by a compactness argument that the
principal eigenvalue μ1 for (3.2) depends continuously on (K − 1)−1, whence the
limit as (K − 1)−1 → 0 is the principal eigenvalue for the Dirichlet problem in the
ball, which is known [S1] to be strictly positive. This would then yield positivity
of the second variation E for K > 0 sufficiently large. However, singularity in M
at the vertex x = 0 complicates this approach in the present case.

Instead, we proceed by direct computation, observing as in [S1, proof of Thm.
6.1.2, p. 102] that the principal eigenvalue of L may be computed explicitly by
separation of variables. Specifically, in polar coordinates (t, ω), where t ∈ (0, 1]
denotes radius and ω ∈ M ∩∂Ω denotes angle, we have, following [S1], the splitting

(3.3) E(η) =
∫ 1

0

∫
M∩∂Ω

t4(〈L1η, η〉+ 〈L2η, η〉)dω dt+

∫
M∩∂Ω

1

2
(K − 1)|η|2dω,

where L1 = −ΔM∩∂B − 6 and L2 = −t2∂2
t − 6t∂t are angular and radial parts.

Thus, the principal eigenvalue μ1 of L is given by the sum (λ1+δ1) of the principal
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eigenvalues λ1 of L1 on the manifold without boundary M ∩ ∂Ω and δ1 of L2 on
(0, 1] with boundary condition 1

2 (K − 1)g(1) + ∂tg(1) = 0.
The angular operator L1 by inspection has principal eigenfunction equal to a

constant, with associated eigenvalue λ1 = −6. The eigenvalue problem for L2 is
the Euler equation

(3.4) −t2g′′ − 6tg′ = δg,
1

2
(K − 1)g(1) + ∂tg(1) = 0.

Here, we observe that the change of dependent and independent variables g(t) =
t−5/2h, z = log t converts (3.4) to L2h = δh, where

(3.5) L2 = −∂2
z + (25/4), z ∈ (−∞, 0],

is again a constant shift of the Laplacian, with boundary condition

(3.6)
1

2
(K − 6)h(0) + ∂th(0) = 0.

This change of coordinates converts the t4-weighted L2 inner product of (3.3)
to the ordinary L2 inner product in z ∈ (−∞, 1]. Hence, the associated energy is∫ 0

−∞(−〈h′′, h〉+(25/4)|h|2)dt, which, integrating by parts and applying the bound-

ary condition (3.6), may be expressed as

(3.7)

E2(h) :=
∫ 0

−∞
(|h′|2 + (25/4)|h|2)dt− h(0)h′(0)

=

∫ 0

−∞
(|h′|2 + (25/4)|h|2)dt+ 1

2
(K − 6)|h(0)|2.

For K ≥ 6, evidently E2(h) ≥ (25/4)‖h‖2L2 . Moreover, it is easily seen that the
limit (25/4)‖h‖2L2 may be achieved by a sequence of functions εeεx, with ε → 0+.
Thus, δ1 = 25/4 for K ≥ 6. Likewise, evidently, δ1 = 25/4 for Dirichlet boundary
conditions h(0) = 0, recovering the corresponding result of [S1]. That is, not only
does the principal eigenvalue of L converge as K → ∞ to that for the Dirichlet
problem, but in fact there is a sharp cutoff at K = 6 after which the two values
coincide:

Collecting information, we find for K ≥ 6 that the principal eigenvalue of L,
(3.2), is μ1(K) = λ1 + μ1(K) = −6 + 25/4 = 1/4, in agreement with the principal
eigenvalue found for the Dirichlet problem in [Si]. In particular, μ1(K) > 0 for K
sufficiently large, giving strict stability of M in Ω with respect to arbitrary C∞

perturbations vanishing at the vertex. In particular, the second variation of area is
strictly positive with respect to volume-preserving variations.

Remark 3.2. Our treatment here simplifies somewhat the original computation of
[S1] for the Dirichlet problem, which proceeded by truncation t ∈ [ε, 1] of the ra-
dial domain, followed by a limiting procedure. The advantage of truncation is
to compactify the domain, allowing diagonalization by a countable basis of eigen-
functions. In our z-coordinates, this amounts to the use of discrete rather than
continuous Fourier expansions to represent potential test functions h.

Remark 3.3. The “saturation” phenomenon seen here, of convergence of λ1 to the
Dirichlet value for finite K ≥ 6, is special to the case of unbounded domains, having
to do with essential spectrum. The compact-domain analog L = −∂2

z , z ∈ [0, 1],
h(0) = 0, κh(1) = h′(1), for example, may be readily calculated to have principal
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eigenvalue δ1(κ) = π2(1+2κ−1+O(κ−2)) as |κ| → ∞, with δ1(∞) = π2 correspond-
ing to the Dirichlet case. Note, for problem (3.4), that for K = 1, corresponding to
Neumann conditions in the original coordinates (3.2), the function h1(z) = e(5/2)z

achieves the minimum value δ1 = 0 subject to (3.6). This corresponds to the choice
η ≡ 1 in (3.2), for which μ1 evidently is −6. More generally, h1(z) = e(6−K)z/2,
δ1(K) = (25/4) − (6 − K)2/4 for K < 6, giving μ1(K) = 1/4 − (6 − K)2/4. It
follows that E is strictly stable precisely for K > 5.

4. Discussion

We note that the above construction, consisting of penalization by deformation
of domain boundary, is rather general and can be applied in principle to minimal
surfaces in essentially arbitrary domains. Thus, we expect that there are many ex-
amples of nonconvex domains with singular volume-constrained local minimizers.
Regularity of volume-constrained global minimizers is more subtle; it is an inter-
esting question whether a global version of the deformation argument used here
could yield an example of a singular global minimizer. We mention also that our
proof of stability relies heavily on the property of zero mean curvature in the basic
calibration argument used there. It would be very interesting to find an example
also of a singular volume-constrained local minimizer with nonzero mean curvature,
i.e., a more “generic” capillary surface. Finally, we recall the key question raised
in [SZ] as to whether there can exist a singular volume-constrained minimizer in
a convex domain, to which an answer in either direction would be extraordinarily
interesting.
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