
PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 146, Number 12, December 2018, Pages 5129–5140
https://doi.org/10.1090/proc/14267

Article electronically published on September 10, 2018

FACTORING ONTO Z
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EXTENSION PROPERTY

RAIMUNDO BRICEÑO, KEVIN MCGOFF, AND RONNIE PAVLOV

(Communicated by Nimish Shah)

Abstract. We define the finite extension property for d-dimensional sub-
shifts, which generalizes the topological strong spatial mixing condition defined
by the first author, and we prove that this property is invariant under topolog-
ical conjugacy. Moreover, we prove that for every d, every d-dimensional block
gluing subshift factors onto every d-dimensional shift of finite type with strictly
lower entropy, a fixed point, and the finite extension property. This result ex-
tends a theorem from [Trans. Amer. Math. Soc. 362 (2010), 4617–4653],
which requires that the factor contain a safe symbol.

1. Introduction

A long-standing problem in the study of topological dynamical systems is the
conjugacy problem, i.e., the problem of determining whether two dynamical systems
which appear different actually exhibit the same dynamical behavior. A related
problem is to determine when a topological dynamical system factors onto another
one, i.e., when there is a surjective continuous map from the first to the second
which intertwines their actions. Such maps are called (topological) factor maps,
and they have been widely studied. We focus on these problems in the context of
symbolic dynamical systems, also called subshifts.

For any natural number d and finite set A (given the discrete topology), a Z
d

subshift is any closed subset (with respect to the product topology) of AZ
d

which is
invariant under every translation σt by a vector t ∈ Z

d. We often refer to a subshift
by the set X, with the understanding that the dynamics are always provided by
the restriction of σ to X. Examples of easily defined subshifts are the so-called Z

d

shifts of finite type (or Z
d SFTs): for any finite set F of finite patterns, X(F) is

defined as the set of all elements of AZ
d

which do not contain any pattern in F . A

special case is X(∅) = AZ
d

, called the full shift.
There are two well-known necessary conditions for the existence of a factor map

φ from X onto Y . First, note that if σt(x) = x for some x ∈ X and t ∈ Z
d, then

σt(φ(x)) = φ(x). Thus, X and Y must satisfy Condition (P): for every x ∈ X,
there exists y ∈ Y such that if σt(x) = x, then σt(y) = y. Note that this condition
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is always satisfied when Y contains a fixed point, i.e., y ∈ Y where σt(y) = y
for all t ∈ Z

d. Second, the topological entropy of a Z
d subshift X (denoted by

h(X); see Section 2 for the definition) cannot increase under a factor map, and
so h(X) ≥ h(Y ) must hold. Surprisingly, for restricted classes of subshifts, these
necessary conditions also seem to be nearly sufficient. (A stronger form of the
following theorem appears in [1].)

Theorem 1.1 ([1]). For topologically mixing Z SFTs X and Y with h(X) > h(Y ),
there exists a factor map from X onto Y if and only if X and Y satisfy Condition
(P ).

When d = 1 and Y is a full shift, even the equal entropy case (i.e., h(X) = h(Y ))
has been solved. In this case, Y automatically contains a fixed point, and so no
additional periodic point hypothesis is necessary.

Theorem 1.2 ([1], [6]). For a Z SFT X and a full shift Y with h(X) ≥ h(Y ),
there exists a factor map from X onto Y .

Unfortunately, the situation is much more complicated for d > 1. In particular,
there are several different candidates for a proper extension of “mixing” to the
multidimensional case. One commonly used condition is the block gluing condition
defined in [2], and a much stronger one is the existence of a so-called safe symbol
(definitions are given in Section 2). We do not attempt to summarize the entire
literature on this topic, but here are a few representative results. First, the theorems
for Z subshifts do not directly extend to Z

d subshifts when d > 1.

Theorem 1.3 ([2]). For every d > 1, there exist topologically mixing Z
d SFTs with

arbitrarily high entropy which do not factor onto any nontrivial full shift.

Theorem 1.4 ([8]). For every d ≥ 3 and every nontrivial Zd full shift Y , there
exists a block gluing Z

d SFT X with h(X) = h(Y ) such that there is no factor map
from X onto Y .

Under a strict entropy inequality, the block gluing hypothesis, which allowed for
the negative examples of Theorem 1.4, implies a positive result for d > 1 even for
general subshifts.

Theorem 1.5 ([2]). If X is a block gluing Z
d subshift, Y is a Z

d SFT with a safe
symbol, and h(X) > h(Y ), then there exists a factor map from X onto Y .

We also note that the safe symbol hypothesis in Theorem 1.5 is very restrictive
and is not at all invariant under topological conjugacy.

In this work, we define a new condition called the finite extension property,
which is significantly weaker than the existence of a safe symbol. We prove that
this condition is conjugacy-invariant, and then we prove the following main result.

Theorem 1.6. If X is a block gluing Z
d subshift, Y is a Z

d SFT with a fixed point
and the finite extension property, and h(X) > h(Y ), then there exists a factor map
from X onto Y .

For Z
d SFT defined by a set of forbidden pairs of adjacent letters, an easily

verified (but not conjugacy invariant) condition is single-site fillability, or SSF ([7]).
For d = 2, SSF means that for any choice of letters a, b, c, d ∈ A, there exists e ∈ A
for which the pattern

a
b e c
d

contains none of the forbidden adjacent pairs. Using
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the forbidden adjacencies as the set of forbidden patterns, it is straightforward to
check that SSF implies the finite extension property. The following corollary is
immediate.

Corollary 1.7. If X is a block gluing Z
2 subshift, Y is a Z

2 SFT that satisfies
single-site fillability and has a fixed point, and h(X) > h(Y ), then there exists a
factor map from X onto Y .

Corollary 1.7 can be used to create explicit examples of new subshifts to which
our results apply, since there are many nearest-neighbor Zd SFTs which have fixed
points and satisfy SSF without having a safe symbol. For instance, one can take
any alphabet A with |A| ≥ 2d + 1, take any nonidentity involution f on A, and
define Y by the rule that no pair of letters {a, f(a)} (a ∈ A) can be adjacent.

2. Definitions

We begin with some basic geometric definitions for Z
d. Anytime we refer to

distance in Z
d, it is with respect to the �∞ distance given by d((vi)

d
i=1, (wi)

d
i=1) =

maxi(|vi − wi|). For sets A,B ⊂ Z
d, we define d(A,B) = mina∈A,b∈B d(a, b).

For every k, we use Ck and Qk to denote the hypercubes [0, k − 1]d and [−k, k]d

respectively. For any set S ⊂ Z
d, we define its inner k-boundary ∂kS to be the

set of all t ∈ S within distance k from some t′ ∈ Sc.

Definition 2.1. A pattern over a finite alphabet A is a member of AS for some
S ⊂ Z

d, which is said to have shape S. We may refer to any pattern with finite
shape as a finite pattern.

We consider patterns to be defined up to translation: if u ∈ AS for a finite
S ⊂ Z

d and v ∈ AT , where T = S+ t for some t ∈ Z
d, then we write u = v to mean

that u(s) = v(s+ t) for each s in S.
For any patterns v ∈ AS and w ∈ AT with S∩T = ∅, we define the concatenation

vw to be the pattern in AS∪T defined by (vw)(S) = v and (vw)(T ) = w.

Definition 2.2. For any finite alphabet A, the Z
d-shift action on AZ

d

, denoted
by {σt}t∈Zd , is defined by (σtx)(s) = x(s+ t) for s, t ∈ Z

d.

We always think of AZ
d

as being endowed with the product discrete topology,
with respect to which it is compact.

Definition 2.3. A Z
d subshift is a closed subset of AZ

d

that is invariant under
the Z

d-shift action.

Any Z
d subshift inherits a topology from AZ

d

, with respect to which it is com-
pact. Each σt is a homeomorphism on any Z

d subshift, and so any Z
d subshift,

when paired with the Z
d-shift action, is a topological dynamical system.

Any Z
d subshift can also be defined in terms of forbidden patterns: for any set

F of finite patterns over A, one can define the set

X(F) = {x ∈ AZ
d

: x(S) /∈ F for all finite S ⊂ Z
d}.

It is well known that any set of the form X(F) is a Z
d subshift, and all Zd subshifts

may be presented in this way.

Definition 2.4. A Z
d shift of finite type (SFT) is a Z

d subshift equal to X(F)
for some finite set F of forbidden finite patterns.
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Definition 2.5. The language of a Z
d subshift X, denoted by L(X), is the set of

all patterns that appear in elements of X. For any S ⊂ Z
d, let LS(X) = L(X)∩AS,

the set of patterns in the language of X with shape S. A finite pattern w will be
called a first offender for X if it is not in L(X) but every proper subpattern of w
belongs to L(X).

Remark 2.6. We have defined the language of a subshift to include both the finite
and infinite patterns that appear in elements of X. We adopt this convention for
convenience of presentation, despite the fact that many authors do not include
infinite patterns in the language.

Definition 2.7. Suppose X and Y are compact, metrizable spaces. Further sup-
pose that Zd acts on each of these spaces by homeomorphisms, with actions denoted
by σ and τ , respectively. A (topological) factor map is any continuous surjection
φ : X → Y such that φ ◦ σt = τt ◦ φ for each t ∈ Z

d. In this case, the pair (Y, τ )
is called a factor of (X, σ), and we say that X factors onto Y . A bijective factor
map is called a topological conjugacy.

For the purposes of this work, we restrict attention to factor maps between
subshifts. It is well known that any factor map φ between Z

d subshifts is a so-
called sliding block code; i.e., there exists n ∈ N so that x(t + [−n, n]d) uniquely
determines (φ(x))(t) for any x ∈ X and t ∈ Z

d. Such n is usually called a radius
for the sliding block code. (See [5] for a proof for d = 1, which extends to d > 1
without changes.) When convenient, for a pattern w with shape S, we may use
φ(w) to denote its image under a sliding block code φ with radius n, with shape
S \ ∂nS.
Definition 2.8. The topological entropy of a Z

d subshift X is

h(X) = lim
n→∞

1

nd
log |LCn

(X)|.

This limit exists by a standard subadditivity argument.

Finally, let us define the mixing properties for Zd subshifts which we will need.

Definition 2.9. A Z
d subshift X is block gluing if there exists g ≥ 0 so that

for any hyperrectangles R,R′ ⊂ Z
d with d(R,R′) > g and any w ∈ LR(X) and

w′ ∈ LR′(X), there exists x ∈ X with x(R) = w and x(R′) = w′.

Definition 2.10. A letter ∗ ∈ A is a safe symbol for a Z
d subshift X if for any

point x ∈ X and any S ⊆ Z
d, changing each letter of x on S to ∗ yields a point in

X.

Definition 2.11. For g ∈ N, a Z
d SFT X has the g-extension property if

there exists a finite set F of forbidden finite patterns inducing X with the following
property: if a pattern w with shape S can be extended to a pattern on S+Qg which
does not contain any patterns from F , then w ∈ L(X); i.e., it can be extended to
a point on all of Zd which does not contain any patterns from F . We say that X
has the finite extension property if it has the g-extension property for some g.

(The reader may check that any X with the g-extension property is block gluing
at distance 2g plus the maximum diameter over w ∈ F .)

The topological strong spatial mixing (TSSM) property for Zd SFTs was
introduced in [3], where it was also shown to be equivalent to the existence of only
finitely many first offenders for X.
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Proposition 2.12. A Z
d SFT X has the TSSM property if and only if it has the

0-extension property.

Proof. Suppose that X has the TSSM property and therefore has only finitely many
first offenders. Let F denote the list of first offenders. We claim that X has the
0-extension property for F . In fact, X = X(F) and if w is a pattern not in L(X),
then w must contain a minimal subpattern not in L(X), which by definition is a
first offender.

For the reverse implication, suppose that X has the 0-extension property for a
finite set F ′ of forbidden finite patterns of diameter at most g. Assume, for the sake
of contradiction, that w is a first offender of diameter greater than g. Then, w /∈ F ′

and, by definition of first offender, every proper subpattern of w is in L(X) and
so not in F ′. Therefore, by the 0-extension property, w is in L(X), contradicting
the assumption that w is a first offender. We conclude that first offenders have
bounded diameter, so there must be finitely many of them. �

It is known that the existence of a safe symbol implies TSSM (see [3]). Thus we
have the following corollary.

Corollary 2.13. If X is a Z
d SFT with a safe symbol, then X has the 0-extension

property.

As noted in the introduction, the finite extension property is also invariant under
topological conjugacy.

Theorem 2.14. If X and Y are conjugate Z
d SFTs and X has the finite extension

property, then Y has the finite extension property.

Proof. Suppose that X has the g-extension property (for forbidden list F) and that
φ : X → Y is a conjugacy. Denote by r the radius of φ and by s the radius of φ−1.
Define a list of patterns on AY as follows:

F ′ = {w ∈ AS+Qs

Y : v ∈ F , v has shape S, φ−1(w) contains v}.
Clearly F ′ is a finite list of finite patterns, and we claim that it induces the shift

of finite type Y . Indeed, by definition, if y ∈ Y , then φ−1(y) ∈ X, and therefore y

contains no pattern in F ′. On the other hand, if y ∈ AZ
d

Y contains no pattern in
F ′, then the point x defined by x(t) = φ−1(y(t+Qs)) contains no pattern in F , so
is in X, and therefore y = φ(x) is in Y .

Now assume that a pattern w ∈ AS
Y can be extended to a pattern v ∈ AS+Qg+r+s

Y

containing no patterns from F ′. Then, by definition, φ−1(v) contains no patterns
from F ; say that φ−1(v) has shape T , and note that T ⊇ S + Qg+r. Then by
the g-extension property of X, the pattern (φ−1(v))(T \ ∂g(T )) is in L(X). Then
obviously φ((φ−1(v))(T \ ∂g(T ))) ∈ L(Y ), and we note that its shape contains S.
Finally, by definitions of r and s, we have φ((φ−1(v))(T \ ∂g(T )))(S) = w, and so
w ∈ L(Y ), completing the proof. �

3. Proof of Theorem 1.6

The overall structure of our proof is similar to previous proofs which used mixing
properties to construct factor maps onto various shifts (see [2] and [4]). By this, we
mean that the proof involves using marker patterns to define “surrounded patterns”
in points of the domain, which will be used to assign patterns on “determined zones”
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after application of the map. Very roughly speaking, given x ∈ X, its image φ(x)
will have patterns on determined zones that depend on corresponding surrounded
patterns in x, and φ(x) will look like the fixed point of Y at all sites not near a
determined zone. Then we will fill the area between determined zones and the fixed
point “background” in stages using the g-extension property of Y . First we give
the proof for d = 2 in order to present a streamlined argument with illustrations,
and then we describe the changes that need to be made for d > 2.

To begin the formal proof, choose any X and Y as in the theorem, with alphabets
AX and AY , respectively. We assume without loss of generality that g ≥ 0 is a gap
distance for the block gluing of X, that Y has the g-extension property for a finite
list F of forbidden finite patterns with diameters less than or equal to g, and that

the fixed point ∗Z2

is in Y .
We now construct markers in X following [2], but we repeat some details here

to set notation. Let p > 5g, and choose a pattern P ∈ LCp
(X) so that h(XP ) >

h(Y ), where XP is the subshift consisting of points of X which do not contain the
pattern P (see [9]). Then define a pattern Q ∈ LCq

(XP ) (for some q ∈ N perhaps
much larger than p) for which Q cannot overlap itself at any nonzero vector in

Qg+p = [−g − p, g + p]2; i.e., for every such vector t, there does not exist x ∈ AZ
2

for which x(Cq) = x(Cq + t) = Q (see [2, 4]). Then use block gluing to create a
marker pattern M ∈ LCm

(X) (m = 2p + 2g + q) with P at each corner, Q in the
center, and patterns Gi ∈ L(XP ), 1 ≤ i ≤ 4, along each edge, as in the left half of
Figure 1. Any pattern as in the right half of Figure 1, whereW ∈ LCk

(XP ) and each
Hi ∈ L(XP ), 1 ≤ i ≤ 4, is called a surrounding frame, whose central occurrence
of W is called a surrounded pattern. The side length k of the shape of W is for
now arbitrary and will be fixed later. For any surrounding frame x(t+ Ck+2g+2m)

in x, we refer to the region t+(g+m)�1+Ck+g+m as a determined zone in φ(x).
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P P
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Figure 1. A marker pattern (left) and a surrounding frame (right).

We need a few simple facts about the locations of determined zones. Firstly,
shown exactly as in [2] and [4], by the marker properties defining M , any two de-
termined zones have distance more than g from each other. In fact, for any two
determined zones t1 + Ck+g+m and t2 + Ck+g+m with distance exactly g + 1, the

surrounding frames x(t1 − (g+m)�1+Ck+2g+2m) and x(t2 − (g+m)�1+Ck+2g+2m)
have overlap consisting of either exactly one occurrence of M or a rectangle with
dimensions m and k + 2g + 2m with occurrences of M at the extreme ends.
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(See Figure 2.) In either case, we say that those determined zones are adjacent.
We use the term component of determined zones to refer to a maximal con-
nected component with respect to this notion of adjacency. Finally, we claim that
if two determined zones Z1 and Z2 are not adjacent, then

(1) d(Z1, Z2) > 2g + p > 7g.

To see this, suppose for a contradiction that two determined zones are separated
by distance more than g and less than or equal to 2g+p. This means that x contains
two surrounding frames separated by a vector t = (t1, t2) where k + 2g + m <
max(|t1|, |t2|) ≤ k + 3g + m + p, which without loss of generality we can take to
be x(Ck+3g+m) and x(t + Ck+3g+m). Our argument will rely only on the general
structure of surrounding frames (and not the specific values of W or the Hi), and so
is unaffected by reflections about horizontal, vertical, or diagonal lines. Therefore,
we may assume without loss of generality that k + 2g +m < t1 ≤ k + 3g +m + p
and 0 ≤ t2 ≤ k + 3g +m+ p.

We note that if t2 ∈ [0, g + p], then d(t, (k + 2g +m, 0)) ≤ g + p, meaning that
the lower-right copy of M within x(Ck+2g+2m) and the lower-left copy of M within
x(t+Ck+3g+m) would have separation by a nonzero vector inQg+p. This contradicts
the definition of Q and so is impossible. The case t2 ∈ [k+2g+m, k+3g+m+ p]
is also not possible, by a similar argument using the upper-right copy of M within
x(Ck+2g+2m) and the lower-left copy of M within x(t + Ck+3g+m). Therefore,
t2 ∈ (g+ p, k+2g+m). However, this implies that the lower-left copy of M within
(t + Ck+2g+2m) overlaps the pattern H along the right side of x(Ck+2g+2m) in a
rectangle with height at least p and width at least m − g − p = p + g + q. This
yields a contradiction since M has a copy of P in each corner and H was assumed
in L(XP ). We have thus established (1), a fact which will be useful later.

M M

MM M

MM

M

M

MM

M MM M

Adjacent
determined zones

Component of (reduced)
determined zones

k+g+m

k-g+m

3g

3g

g
W

2

W
1

W
3

W
2

W
1

W
3

Figure 2. Surrounding frames and component of determined
zones induced by them (left). Reduced determined zones after
Stage 3 in a ∗-background (right).

Now let x be in X. Informally speaking, φ(x) will be defined in six alternat-
ing stages, determined completely by the surrounded patterns in x. After each
odd-indexed stage 2i − 1 (i = 1, 2), φ(x) will be defined on a set U2i−1 as a
pattern u2i−1 ∈ L(Y ). Then, the following (even-indexed) stage 2i will define
φ(x) on a set S2i, where φ(x)(S2i) is a pattern s2i for which v2i = u2i−1s2i on
V2i = U2i−1 � S2i contains no patterns from F . The following (odd-indexed) stage
2i+1 will remove all letters on ∂gV2i, yielding a pattern u2i+1 on U2i+1 = V2i\∂gV2i.
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Then u2i+1 ∈ L(Y ) by the g-extension property, allowing the process to continue.
The patterns placed during even-indexed stages are dependent only on nearby sur-
rounded patterns in x; to describe this dependency, we require the following auxil-
iary function.

Since h(XP ) > h(Y ), for sufficiently large k it is the case that

(2) |LCk
(XP )| > |LCk+g+m

(Y )| · |AY |12g(k−3g+m)+196g2

.

Fix any such k (which does not depend on x), and then define a surjection ψ from
LCk

(XP ) to the set of all tuples of the form (ij)1≤j≤9, where 1 ≤ i1 ≤ |LCk+g+m
(Y )|,

1 ≤ ij ≤ |AY |3g(k−3g+m) for 2 ≤ j ≤ 5, and 1 ≤ ij ≤ |AY |49g
2

for 6 ≤ j ≤ 9. We
are now ready to describe the stages of defining the factor map φ.

Stage 1: Define U1 to be the set of all t ∈ Z
2 at a distance of more than g from

all determined zones, and define u1 = ∗U1 . Clearly u1 ∈ L(Y ) since ∗Z2 ∈ Y . We
note that after Stage 1, the undefined portion of φ(x) consists of components of
determined zones, along with all sites within distance g of them. We use the term
“island” to denote the set of sites within distance g of such a component. By (1),
any two nonequal islands have distance more than 5g. For any island I, and for
i = 1, 2, define Ti(I) to be the sets of e1- and e2-coordinates (respectively) which
appear in some determined zone in I.

Stage 2: For each island I, the set I∩(T1(I)×T2(I)) is the disjoint union of the
determined zones in the component inducing I. Let S2 =

⋃
I(I ∩ (T1(I)× T2(I))).

We define a pattern s2 on S2 as follows. For any determined zone t + Ck+g+m,
by definition x(t + Ck) is a surrounded pattern in x. Let the tuple (ij)1≤j≤9 be
defined by ψ(x(t + Ck)) = (ij)1≤j≤9, and then let s2(t + Ck+g+m) be the i1th
pattern in LCk+g+m

(Y ) according to the lexicographic ordering. Then s2 is just the
concatenation of these patterns.

We define V2 = U1 � S2 and v2 = u1s2. Each pattern placed on a determined
zone was assumed to be in L(Y ) and so contained no patterns from F . As noted
above, the same is true for the ∗-pattern u1 placed on U1. Since patterns in F have
diameters less than g and since determined zones have distance greater than g from
each other and from U1, v2 contains no patterns from F .

Stage 3: Define U3 = V2 \ ∂gV2 and u3 = v2(U3). By the g-extension property,
u3 ∈ L(Y ).

To more easily describe future stages, we describe the structure of the set U3.
Namely, U3 consists of two types of sites: those at distance more than 2g from all
determined zones and those within a determined zone in an island I and for which
both coordinates are at distance more than g from the corresponding Ti(I)

c. For
each island I, U3 ∩ I consists of a disjoint union of squares obtained from removing
the inner g-boundary from each determined zone; we call these squares “reduced
determined zones”. (See Figure 2.)

Stage 4: Define S4 to be the set of all sites which are within distance 2g of some
determined zone in an island I and have one coordinate which is within distance g of
the corresponding Ti(I)

c and one coordinate which has a distance of more than 2g
from the corresponding Ti(I)

c. Informally, S4 is the (disjoint) union of all rectangles
with dimensions 3g and k− 3g+m that share (at least one of) their longest side(s)
with a reduced determined zone and are centered along the corresponding side of
that reduced determined zone. Any two such rectangles are separated by distance
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greater than g. If they’re part of the same island, then this is true since reduced
determined zones have side length greater than m− g > 2p− g > g, and if they are
part of different islands, then this follows from (1).

We now define a pattern s4 on S4. Choose any of the rectangles R comprising
S4. First, we need a way to associate a determined zone to R. To this end, choose
the first direction in the ordering {up, left, down, right} for which there is a reduced
determined zone adjacent to R in that direction, which came from some determined
zone. Since u3 ∈ L(Y ), there exists a pattern on R which yields a pattern in L(Y )
when concatenated with u3. However, we need to choose such a pattern on R using
only the portion of x which lies within a uniformly bounded distance of R to ensure
that φ is a sliding block code, and if the island I is quite large, then there is no
obvious way to do so. Instead, we settle for choosing a pattern on R which creates
no patterns from F when concatenated with u3. That is, consider the collection of
patterns {w ∈ (AY )

R : u3w contains no patterns from F}; note that this collection
depends only on the portion of u3 within distance g of R. Since u3 was in L(Y ),
this collection is nonempty, and it trivially has cardinality bounded from above by
|AY ||R| ≤ |AY |3g(k−3g+m).

We then define s4(R) to be the ijth pattern in this collection according to the
lexicographic ordering, where t+Ck+g+m was the determined zone associated to R
above, ψ(x(t+Ck)) = (ij)1≤j≤9, and j is taken to be 2, 3, 4, or 5 based on whether
t + Ck+g+m is reached by moving up, left, down, or right from R. (We adopt the
convention, here and later, that for a totally ordered set S and n > |S|, the nth
element of S is just taken to be the maximal element.) We note for future reference
that no ij determines patterns on two different rectangles R. Now, s4 is just the
concatenation of these patterns.

Define V4 = U3 � S4 and v4 = u3s4. (See Figure 3.) No forbidden pattern in F
can intersect two rectangles R since distinct rectangles R are separated by distance
more than g. No forbidden pattern in F can intersect exactly one rectangle R since
u3s4(R) was assumed not to contain such patterns. Finally, no forbidden pattern
in F can occur disjointly from all rectangles R since u3 ∈ L(Y ). Therefore, v4
contains no patterns from F .
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1
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3

5g

3g

4g
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6g

k-5g+mk-3g+m

Figure 3. Sites assigned during Stages 1, 2, and 4 are in dark gray,
light gray, and medium gray, respectively (left). Sites assigned
during Stage 6 are in white, and doubly reduced determined zones
in light gray (right).
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Stage 5: Define U5 = V4 \ ∂gV4, and u5 = v4(U5). By the g-extension property,
u5 ∈ L(Y ). Again we explicitly describe the structure of U5. Now, U5 consists
of three types of sites. The first are those which are at a distance of more than
3g from all determined zones. The second are those which are within distance 3g
from a determined zone in an island I and for which both coordinates have distance
more than 2g from the corresponding Ti(I)

c. Such sites form a disjoint union of
squares obtained by removing the inner 2g-boundary from all determined zones; we
call these “doubly reduced determined zones”. The third type are those which are
within distance 3g from a determined zone in an island I and have one coordinate
within distance 2g from the corresponding Ti(I)

c and one coordinate with distance
more than 3g from the corresponding Ti(I)

c.

Stage 6: We define S6 = Uc
5 . From the description above, it should be clear

that the sites in S6 have the following properties: they are within distance 3g
from a determined zone in an island I and have one coordinate within distance 2g
from the corresponding Ti(I)

c and the other coordinate within distance 3g from
the corresponding Ti(I)

c. By (1), sites in S6 associated to different islands have
distance at least g. Since doubly reduced determined zones have side length greater
than m−3g > 2p−3g > 3g, we see that S6 consists of a disjoint union of connected
components with diameters at most 7g separated by distance more than g, which
we call holes.

We fill the holes with patterns in much the same way as in Stage 4. We again
associate a determined zone to each hole H. To this end, choose the first direction
in the ordering {up-left, up-right, down-left, down-right} for which there is a doubly
reduced determined zone adjacent to H in that direction, which came from some
determined zone.

For each hole H, consider the collection of patterns

{w ∈ (AY )
H : u5w contains no patterns from F}.

Since u5 ∈ L(Y ), this collection is nonempty, and its cardinality is at most |AY ||H| ≤
|AY |49g

2

.
We define s6(H) to be the ijth pattern in this collection according to the lex-

icographic ordering, where t + Ck+g+m was the determined zone associated to H
above, ψ(x(t+Ck)) = (ij)1≤j≤9, and j is taken to be 6, 7, 8, or 9 based on whether
t + Ck+g+m is reached by moving up-left, up-right, down-left, or down-right from
H. As in Stage 4, no ij determines patterns on two different holes H.

Now, s6 is just the concatenation of these patterns on holes. Define V6 = U5 �
S6 = Z

2 and v6 = u5s6. Exactly as in Stage 4, v6 contains no patterns from F ,
since u5 was in L(Y ) and holes are separated by distances of at least g. Then
v6 ∈ Y , and so we define φ(x) = v6 and so we define φ(x) = v6, completing the six
stages of the definition of φ(x).

Finally, we must show that φ is shift-commuting, continuous, and surjective.
For shift-commuting and continuity, we claim that φ is a sliding block code. To see
this, we first note that the status of any site t (meaning either its assigned symbol
or the fact that no symbol has been assigned) after Stage 1 clearly depends only
on whether t is within distance g from a determined zone, which is determined by
knowledge of x on sites within distance k + 3g + 2m from t. For any subsequent
stage i, the status of any site t depends only on the status of sites after stage i− 1
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within distance k + 3g + 2m of t. Therefore, φ is a sliding block code with radius
6(k + 3g + 2m).

The proof that φ is surjective is quite similar to the ones from [2] and [4], and
so we only outline some slight differences here. Firstly, we only consider x ∈ X
consisting of a lattice of aligned overlapping surrounding frames as in the left-hand
side of Figure 4 showing that their φ-images already cover all of Y . In that figure,
the right-hand side displays the regions of φ(x), partitioned (by color) by the stage
which determined their values. However, since ψ was a surjection and each ij from
any ψ(x(t+Ck)) is used at most once, it’s clear that for any y ∈ Y , the surrounded
patterns Wi on the left can be chosen to yield the desired subpatterns of y on the
right, and so φ is a surjective factor map. This completes the proof of Theorem 1.6
for d = 2.
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Figure 4. An element of X and its image under φ.

It remains only to describe necessary changes in the proof for d > 2. Markers
are constructed exactly as before, with shapes which are d-dimensional hypercubes
rather than squares. We choose p > (2d+1)g, yielding a version of (1) guaranteeing
distance more than (2d+ 3)g between all nonadjacent determined zones. The sur-
jection ψ for d = 2 had nine coordinates: one for the determined zones themselves,
four for the rectangles placed in Stage 4 along edges, and four for the holes placed
in Stage 6 near corners. For d > 2, ψ has 3d coordinates, again corresponding to the
main bulk of a determined zone plus all its lower-dimensional “faces”. This requires
a version of (2) in which 12g(k−3g+m)+196g2 is replaced by a more complicated
polynomial expression fd(k, g,m) dependent on sizes of the sets Si (defined below)
and bounded from above by d((k+3g+m+2dg)d−(k+g+m−2dg)d) (d times the
volume difference of two d-dimensional hypercubes). This polynomial has degree
d− 1 in k, thus the desired inequality still holds for large enough k by definition of
entropy.

The definition of φ proceeds in alternating stages exactly as before; for arbitrary
d there will be 2(d + 1) stages. Again U1 consists of sites which are at distance
more than g from all determined zones, and u1 = ∗U1 . Similarly, S2 consists of
the union of all determined zones, and s2 is determined on each determined zone
by knowledge of the corresponding surrounded pattern in x. Then, for each j ≥ 1,
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V2j = U2j−1 � S2j and U2j+1 = V2j \ ∂gV2j , and so we must only describe the sets
S2j . For 1 < j ≤ d+ 1, S2j consists of all sites t with the following properties:

• t is within distance jg of some determined zone in an island I,
• for all i < j, i coordinates of t are within distance (j − 2 + i)g of the
corresponding Ti(I)

c, and
• d − j + 1 coordinates of t have distance more than (2j − 2)g from the
corresponding Ti(I)

c.

We leave it to the reader to check that with this definition, each S2j is disjoint
from U2j−1 and V2(d+1) = Z

d. The proof that φ is a factor map is analogous to the
d = 2 proof, and the proof that φ is surjective simply uses d-dimensional versions
of the points in Figure 4 (see [2] and [4]); we again leave the details to the reader.
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