Derived invariance of support varieties
HTML articles powered by AMS MathViewer
- by Julian Külshammer, Chrysostomos Psaroudakis and Øystein Skartsæterhagen
- Proc. Amer. Math. Soc. 147 (2019), 1-14
- DOI: https://doi.org/10.1090/proc/13302
- Published electronically: October 22, 2018
- PDF | Request permission
Abstract:
The (Fg) condition on Hochschild cohomology as well as the support variety theory are shown to be invariant under derived equivalence.References
- Maurice Auslander and Idun Reiten, Homologically finite subcategories, Representations of algebras and related topics (Kyoto, 1990) London Math. Soc. Lecture Note Ser., vol. 168, Cambridge Univ. Press, Cambridge, 1992, pp. 1–42. MR 1211476
- Aslak Bakke Buan, Henning Krause, Nicole Snashall, and Øyvind Solberg, Axiomatic approach to support varieties, preprint in preparation, 2015.
- Petter Andreas Bergh and Steffen Oppermann, Cohomology of twisted tensor products, J. Algebra 320 (2008), no. 8, 3327–3338. MR 2450729, DOI 10.1016/j.jalgebra.2008.08.005
- Aslak Bakke Buan and Øyvind Solberg, Relative cotilting theory and almost complete cotilting modules, Algebras and modules, II (Geiranger, 1996) CMS Conf. Proc., vol. 24, Amer. Math. Soc., Providence, RI, 1998, pp. 77–92. MR 1648616, DOI 10.1007/s10468-005-0341-8
- Jon F. Carlson, The varieties and the cohomology ring of a module, J. Algebra 85 (1983), no. 1, 104–143. MR 723070, DOI 10.1016/0021-8693(83)90121-7
- Xiao-Wu Chen and Yu Ye, Retractions and Gorenstein homological properties, Algebr. Represent. Theory 17 (2014), no. 3, 713–733. MR 3254767, DOI 10.1007/s10468-013-9415-1
- Karin Erdmann, Miles Holloway, Rachel Taillefer, Nicole Snashall, and Øyvind Solberg, Support varieties for selfinjective algebras, $K$-Theory 33 (2004), no. 1, 67–87. MR 2199789, DOI 10.1007/s10977-004-0838-7
- Karin Erdmann and Øyvind Solberg, Radical cube zero weakly symmetric algebras and support varieties, J. Pure Appl. Algebra 215 (2011), no. 2, 185–200. MR 2720683, DOI 10.1016/j.jpaa.2010.04.012
- Rolf Farnsteiner, Tameness and complexity of finite group schemes, Bull. Lond. Math. Soc. 39 (2007), no. 1, 63–70. MR 2303520, DOI 10.1112/blms/bdl006
- Eric M. Friedlander and Julia Pevtsova, Constructions for infinitesimal group schemes, Trans. Amer. Math. Soc. 363 (2011), no. 11, 6007–6061. MR 2817418, DOI 10.1090/S0002-9947-2011-05330-4
- Dieter Happel, On the derived category of a finite-dimensional algebra, Comment. Math. Helv. 62 (1987), no. 3, 339–389. MR 910167, DOI 10.1007/BF02564452
- Dieter Happel, On Gorenstein algebras, Representation theory of finite groups and finite-dimensional algebras (Bielefeld, 1991) Progr. Math., vol. 95, Birkhäuser, Basel, 1991, pp. 389–404. MR 1112170, DOI 10.1007/978-3-0348-8658-1_{1}6
- Thorsten Holm, Hochschild cohomology rings of algebras $k[X]/(f)$, Beiträge Algebra Geom. 41 (2000), no. 1, 291–301. MR 1745598
- Ryoshi Hotta, Kiyoshi Takeuchi, and Toshiyuki Tanisaki, $D$-modules, perverse sheaves, and representation theory, Progress in Mathematics, vol. 236, Birkhäuser Boston, Inc., Boston, MA, 2008. Translated from the 1995 Japanese edition by Takeuchi. MR 2357361, DOI 10.1007/978-0-8176-4523-6
- Steffen König and Alexander Zimmermann, Derived equivalences for group rings, Lecture Notes in Mathematics, vol. 1685, Springer-Verlag, Berlin, 1998. With contributions by Bernhard Keller, Markus Linckelmann, Jeremy Rickard and Raphaël Rouquier. MR 1649837, DOI 10.1007/BFb0096366
- Markus Linckelmann, Finite generation of Hochschild cohomology of Hecke algebras of finite classical type in characteristic zero, Bull. Lond. Math. Soc. 43 (2011), no. 5, 871–885. MR 2854558, DOI 10.1112/blms/bdr024
- Hiroshi Nagase, Hochschild cohomology and Gorenstein Nakayama algebras, Proceedings of the 43rd Symposium on Ring Theory and Representation Theory, Symp. Ring Theory Represent. Theory Organ. Comm., Soja, 2011, pp. 37–41. MR 2808393
- Chrysostomos Psaroudakis, Øystein Skartsæterhagen, and Øyvind Solberg, Gorenstein categories, singular equivalences and finite generation of cohomology rings in recollements, Trans. Amer. Math. Soc. Ser. B 1 (2014), 45–95. MR 3274657, DOI 10.1090/S2330-0000-2014-00004-6
- Jeremy Rickard, Morita theory for derived categories, J. London Math. Soc. (2) 39 (1989), no. 3, 436–456. MR 1002456, DOI 10.1112/jlms/s2-39.3.436
- Jeremy Rickard, Derived equivalences as derived functors, J. London Math. Soc. (2) 43 (1991), no. 1, 37–48. MR 1099084, DOI 10.1112/jlms/s2-43.1.37
- Claus Michael Ringel, The Gorenstein projective modules for the Nakayama algebras. I, J. Algebra 385 (2013), 241–261. MR 3049570, DOI 10.1016/j.jalgebra.2013.03.014
- Joseph J. Rotman, An introduction to homological algebra, 2nd ed., Universitext, Springer, New York, 2009. MR 2455920, DOI 10.1007/b98977
- Øystein Skartsæterhagen, Singular equivalence and the (Fg) condition, J. Algebra 452 (2016), 66–93. MR 3461056, DOI 10.1016/j.jalgebra.2015.12.012
- Øyvind Solberg, Support varieties for modules and complexes, Trends in representation theory of algebras and related topics, Contemp. Math., vol. 406, Amer. Math. Soc., Providence, RI, 2006, pp. 239–270. MR 2258047, DOI 10.1090/conm/406/07659
- Nicole Snashall and Øyvind Solberg, Support varieties and Hochschild cohomology rings, Proc. London Math. Soc. (3) 88 (2004), no. 3, 705–732. MR 2044054, DOI 10.1112/S002461150301459X
- Zhengfang Wang, Singular equivalence of Morita type with level, J. Algebra 439 (2015), 245–269. MR 3373371, DOI 10.1016/j.jalgebra.2015.05.012
- Charles A. Weibel, An introduction to homological algebra, Cambridge Studies in Advanced Mathematics, vol. 38, Cambridge University Press, Cambridge, 1994. MR 1269324, DOI 10.1017/CBO9781139644136
- Alexander Zimmermann, Representation theory, Algebra and Applications, vol. 19, Springer, Cham, 2014. A homological algebra point of view. MR 3289041, DOI 10.1007/978-3-319-07968-4
Bibliographic Information
- Julian Külshammer
- Affiliation: Institute of Algebra and Number Theory, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
- MR Author ID: 928718
- Email: kuelsha@mathematik.uni-stuttgart.de
- Chrysostomos Psaroudakis
- Affiliation: Department of Mathematical Sciences, Norwegian University of Science and Technology, 7491 Trondheim, Norway
- MR Author ID: 1041820
- Email: chrysostomos.psaroudakis@math.ntnu.no, chpsaroud@gmail.com
- Øystein Skartsæterhagen
- Affiliation: Department of Mathematical Sciences, Norwegian University of Science and Technology, 7491 Trondheim, Norway
- MR Author ID: 1084194
- Email: oystein.skartsaterhagen@math.ntnu.no
- Received by editor(s): February 20, 2015
- Published electronically: October 22, 2018
- Additional Notes: The authors want to thank Hongxing Chen, Steffen Koenig and Øyvind Solberg for useful discussions and valuable comments. Thanks are also extended to Wei Hu for pointing out Remark \ref{standardnotneeded}
- Communicated by: Harm Derksen
- © Copyright 2018 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 147 (2019), 1-14
- MSC (2010): Primary 16E40, 16E65, 18E30; Secondary 16G10
- DOI: https://doi.org/10.1090/proc/13302
- MathSciNet review: 3876726