Hyperbolic 3-manifolds admitting no fillable contact structures
HTML articles powered by AMS MathViewer
- by Youlin Li and Yajing Liu
- Proc. Amer. Math. Soc. 147 (2019), 351-360
- DOI: https://doi.org/10.1090/proc/13870
- Published electronically: October 18, 2018
- PDF | Request permission
Abstract:
Given an irreducible 3-manifold $M$, Eliashberg asked whether $M$ admits a tight or fillable contact structure. When $M$ is a Seifert fibered space, this question is completely solved. However, it has not been answered for any hyperbolic 3-manifold $M$, even for the existence question of fillable contact structures. In this paper, we find infinitely many hyperbolic 3-manifolds that admit no weakly symplectically fillable contact structures, using tools in Heegaard Floer theory. We also remark that some of these manifolds do admit tight contact structures.References
- John A. Baldwin and John B. Etnyre, Admissible transverse surgery does not preserve tightness, Math. Ann. 357 (2013), no. 2, 441–468. MR 3096514, DOI 10.1007/s00208-013-0911-8
- Y. Eliashberg, Classification of overtwisted contact structures on $3$-manifolds, Invent. Math. 98 (1989), no. 3, 623–637. MR 1022310, DOI 10.1007/BF01393840
- Yakov Eliashberg, Filling by holomorphic discs and its applications, Geometry of low-dimensional manifolds, 2 (Durham, 1989) London Math. Soc. Lecture Note Ser., vol. 151, Cambridge Univ. Press, Cambridge, 1990, pp. 45–67. MR 1171908
- Yakov Eliashberg, Contact $3$-manifolds twenty years since J. Martinet’s work, Ann. Inst. Fourier (Grenoble) 42 (1992), no. 1-2, 165–192 (English, with French summary). MR 1162559
- John B. Etnyre and Ko Honda, On the nonexistence of tight contact structures, Ann. of Math. (2) 153 (2001), no. 3, 749–766. MR 1836287, DOI 10.2307/2661367
- John B. Etnyre and Ko Honda, Tight contact structures with no symplectic fillings, Invent. Math. 148 (2002), no. 3, 609–626. MR 1908061, DOI 10.1007/s002220100204
- Mario Eudave Muñoz, Band sums of links which yield composite links. The cabling conjecture for strongly invertible knots, Trans. Amer. Math. Soc. 330 (1992), no. 2, 463–501. MR 1112545, DOI 10.1090/S0002-9947-1992-1112545-X
- Dongseok Kim and Jaeun Lee, Some invariants of pretzel links, Bull. Austral. Math. Soc. 75 (2007), no. 2, 253–271. MR 2312569, DOI 10.1017/S0004972700039198
- Amey Kaloti, Bülent Tosun, Hyperbolic rational homology spheres not admitting fillable contact structures, arXiv:1508.07300.
- Rob Kirby (ed.), Problems in low-dimensional topology, Geometric topology (Athens, GA, 1993) AMS/IP Stud. Adv. Math., vol. 2, Amer. Math. Soc., Providence, RI, 1997, pp. 35–473. MR 1470751, DOI 10.1090/amsip/002.2/02
- Ana G. Lecuona and Paolo Lisca, Stein fillable Seifert fibered 3-manifolds, Algebr. Geom. Topol. 11 (2011), no. 2, 625–642. MR 2782538, DOI 10.2140/agt.2011.11.625
- Paolo Lisca, Symplectic fillings and positive scalar curvature, Geom. Topol. 2 (1998), 103–116. MR 1633282, DOI 10.2140/gt.1998.2.103
- Paolo Lisca, On symplectic fillings of $3$-manifolds, Proceedings of 6th Gökova Geometry-Topology Conference, 1999, pp. 151–159. MR 1701644
- Paolo Lisca and András I. Stipsicz, Tight, not semi-fillable contact circle bundles, Math. Ann. 328 (2004), no. 1-2, 285–298. MR 2030378, DOI 10.1007/s00208-003-0483-0
- Paolo Lisca and András I. Stipsicz, Ozsváth-Szabó invariants and tight contact three-manifolds. I, Geom. Topol. 8 (2004), 925–945. MR 2087073, DOI 10.2140/gt.2004.8.925
- Paolo Lisca and András I. Stipsicz, Ozsváth-Szabó invariants and tight contact three-manifolds. II, J. Differential Geom. 75 (2007), no. 1, 109–141. MR 2282726
- Paolo Lisca and András I. Stipsicz, On the existence of tight contact structures on Seifert fibered 3-manifolds, Duke Math. J. 148 (2009), no. 2, 175–209. MR 2524494, DOI 10.1215/00127094-2009-024
- Thomas W. Mattman, Cyclic and finite surgeries on pretzel knots, J. Knot Theory Ramifications 11 (2002), no. 6, 891–902. Knots 2000 Korea, Vol. 3 (Yongpyong). MR 1936241, DOI 10.1142/S0218216502002037
- Jeffrey Meier, Small Seifert fibered surgery on hyperbolic pretzel knots, Algebr. Geom. Topol. 14 (2014), no. 1, 439–487. MR 3158766, DOI 10.2140/agt.2014.14.439
- Yi Ni and Zhongtao Wu, Cosmetic surgeries on knots in $S^3$, J. Reine Angew. Math. 706 (2015), 1–17. MR 3393360, DOI 10.1515/crelle-2013-0067
- Brendan Owens and Sašo Strle, A characterization of the $\Bbb Z^n\oplus \Bbb Z(\delta )$ lattice and definite nonunimodular intersection forms, Amer. J. Math. 134 (2012), no. 4, 891–913. MR 2956253, DOI 10.1353/ajm.2012.0026
- Brendan Owens and Sašo Strle, Dehn surgeries and negative-definite four-manifolds, Selecta Math. (N.S.) 18 (2012), no. 4, 839–854. MR 3000471, DOI 10.1007/s00029-012-0086-2
- Peter Ozsváth and Zoltán Szabó, Absolutely graded Floer homologies and intersection forms for four-manifolds with boundary, Adv. Math. 173 (2003), no. 2, 179–261. MR 1957829, DOI 10.1016/S0001-8708(02)00030-0
- Peter Ozsváth and Zoltán Szabó, Holomorphic disks and knot invariants, Adv. Math. 186 (2004), no. 1, 58–116. MR 2065507, DOI 10.1016/j.aim.2003.05.001
- Peter Ozsváth and Zoltán Szabó, Holomorphic disks and genus bounds, Geom. Topol. 8 (2004), 311–334. MR 2023281, DOI 10.2140/gt.2004.8.311
- Peter Ozsváth and Zoltán Szabó, On knot Floer homology and lens space surgeries, Topology 44 (2005), no. 6, 1281–1300. MR 2168576, DOI 10.1016/j.top.2005.05.001
- Peter Ozsváth and Zoltán Szabó, Holomorphic disks, link invariants and the multi-variable Alexander polynomial, Algebr. Geom. Topol. 8 (2008), no. 2, 615–692. MR 2443092, DOI 10.2140/agt.2008.8.615
- Peter S. Ozsváth and Zoltán Szabó, Knot Floer homology and rational surgeries, Algebr. Geom. Topol. 11 (2011), no. 1, 1–68. MR 2764036, DOI 10.2140/agt.2011.11.1
- Grisha Perelman, The entropy formula for the Ricci flow and its geometric applications, arXiv: 0211159.
- Grisha Perelman, Ricci flow with surgery on three-manifolds, arXiv: 0303109.
- Grisha Perelman, Finite extinction time for the solutions to the Ricci flow on certain three-manifolds, arXiv: 0307245.
- H. F. Trotter, Non-invertible knots exist, Topology 2 (1963), 275–280. MR 158395, DOI 10.1016/0040-9383(63)90011-9
- Ying-Qing Wu, The classification of toroidal Dehn surgeries on Montesinos knots, Comm. Anal. Geom. 19 (2011), no. 2, 305–345. MR 2835882, DOI 10.4310/CAG.2011.v19.n2.a3
Bibliographic Information
- Youlin Li
- Affiliation: Department of Mathematics, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
- MR Author ID: 719542
- Email: liyoulin@sjtu.edu.cn
- Yajing Liu
- Affiliation: Department of Mathematics, University of California, Los Angeles, 520 Portola Plaza, Los Angeles, California 90095
- MR Author ID: 1230010
- Email: yajing.leo@gmail.com
- Received by editor(s): August 1, 2016
- Published electronically: October 18, 2018
- Communicated by: Lei Ni
- © Copyright 2018 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 147 (2019), 351-360
- MSC (2010): Primary 53P10; Secondary 57M25
- DOI: https://doi.org/10.1090/proc/13870
- MathSciNet review: 3876754