A polynomial time knot polynomial
HTML articles powered by AMS MathViewer
- by Dror Bar-Natan and Roland van der Veen
- Proc. Amer. Math. Soc. 147 (2019), 377-397
- DOI: https://doi.org/10.1090/proc/14166
- Published electronically: October 18, 2018
- PDF | Request permission
Abstract:
We present the strongest known knot invariant that can be computed effectively (in polynomial time).References
- The Knot Atlas, http://katlas.org/.
- Dror Bar-Natan, Fast Khovanov homology computations, J. Knot Theory Ramifications 16 (2007), no. 3, 243–255. MR 2320156, DOI 10.1142/S0218216507005294
- Gerhard Burde and Heiner Zieschang, Knots, 2nd ed., De Gruyter Studies in Mathematics, vol. 5, Walter de Gruyter & Co., Berlin, 2003. MR 1959408
- J. C. Cha and C. Livingston, KnotInfo: Table of knot invariants, http://www .indiana.edu/˜knotinfo.
- Pavel Etingof and Olivier Schiffmann, Lectures on quantum groups, Lectures in Mathematical Physics, International Press, Boston, MA, 1998. MR 1698405
- Kazuo Habiro, Bottom tangles and universal invariants, Algebr. Geom. Topol. 6 (2006), 1113–1214. MR 2253443, DOI 10.2140/agt.2006.6.1113
- Louis H. Kauffman, Rotational virtual knots and quantum link invariants, J. Knot Theory Ramifications 24 (2015), no. 13, 1541008, 46. MR 3434547, DOI 10.1142/S0218216515410084
- Shun Long Luo, Wick ordering for $q$-Heisenberg algebra, Phys. Lett. A 234 (1997), no. 3, 159–162. MR 1472456, DOI 10.1016/S0375-9601(97)00508-2
- Shahn Majid, A quantum groups primer, London Mathematical Society Lecture Note Series, vol. 292, Cambridge University Press, Cambridge, 2002. MR 1904789, DOI 10.1017/CBO9780511549892
- Tomotada Ohtsuki, On the 2-loop polynomial of knots, Geom. Topol. 11 (2007), 1357–1475. MR 2326948, DOI 10.2140/gt.2007.11.1357
- Tomotada Ohtsuki, Quantum invariants, Series on Knots and Everything, vol. 29, World Scientific Publishing Co., Inc., River Edge, NJ, 2002. A study of knots, 3-manifolds, and their sets. MR 1881401
- Andrea Overbay, Perturbative Expansion of the Colored Jones Polynomial, ProQuest LLC, Ann Arbor, MI, 2013. Thesis (Ph.D.)–The University of North Carolina at Chapel Hill. MR 3192822
- Michael Polyak, Minimal generating sets of Reidemeister moves, Quantum Topol. 1 (2010), no. 4, 399–411. MR 2733246, DOI 10.4171/QT/10
- L. Rozansky, The universal $R$-matrix, Burau representation, and the Melvin-Morton expansion of the colored Jones polynomial, Adv. Math. 134 (1998), no. 1, 1–31. MR 1612375, DOI 10.1006/aima.1997.1661
- Vladimir G. Turaev, Quantum invariants of knots and 3-manifolds, De Gruyter Studies in Mathematics, vol. 18, De Gruyter, Berlin, 2016. Third edition [of MR1292673]. MR 3617439, DOI 10.1515/9783110435221
Bibliographic Information
- Dror Bar-Natan
- Affiliation: Department of Mathematics, University of Toronto, Toronto, Ontario M5S 2E4, Canada
- Email: drorbn@math.toronto.edu
- Roland van der Veen
- Affiliation: Mathematisch Instituut, Universiteit Leiden, Niels Bohrweg 1, 2333 CA Leiden, Holland
- Email: r.i.van.der.veen@math.leidenuniv.nl
- Received by editor(s): September 19, 2017
- Received by editor(s) in revised form: January 15, 2018
- Published electronically: October 18, 2018
- Additional Notes: This work was partially supported by NSERC grant RGPIN 262178 and by the Netherlands Organisation for Scientific Research.
- Communicated by: David Futer
- © Copyright 2018 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 147 (2019), 377-397
- MSC (2010): Primary 57M25; Secondary 57M27
- DOI: https://doi.org/10.1090/proc/14166
- MathSciNet review: 3876757