The value of the global intertwining operators on spherical vectors
HTML articles powered by AMS MathViewer
- by Volker Heiermann
- Proc. Amer. Math. Soc. 147 (2019), 115-124
- DOI: https://doi.org/10.1090/proc/14208
- Published electronically: September 17, 2018
- PDF | Request permission
Abstract:
Let $F$ be a global field, let $G$ be an unramified quasi-split reductive group over $F$, and let $\chi$ be an everywhere unramified automorphic character of a maximal maximally split torus of $G$. Using Langlands-Shahidi theory, we compute the meromorphic function defined by the action of a global standard intertwining operator associated to $\chi$ on a spherical vector and show that the ratio of its poles in the positive Weyl chamber is well behaved.References
- James Arthur, Intertwining operators and residues. I. Weighted characters, J. Funct. Anal. 84 (1989), no. 1, 19–84. MR 999488, DOI 10.1016/0022-1236(89)90110-9
- A. Borel, Automorphic $L$-functions, Automorphic forms, representations and $L$-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977) Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, R.I., 1979, pp. 27–61. MR 546608
- W. Casselman, The unramified principal series of ${\mathfrak {p}}$-adic groups. I. The spherical function, Compositio Math. 40 (1980), no. 3, 387–406. MR 571057
- P. Deligne, Les constantes des équations fonctionnelles des fonctions $L$, Modular functions of one variable, II (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972) Lecture Notes in Math., Vol. 349, Springer, Berlin, 1973, pp. 501–597 (French). MR 0349635
- M. De Martino, V. Heiermann, and E. Opdam, On the unramified automorphic spectrum, arXiv:1512.08566v2 (2017).
- C. David Keys and Freydoon Shahidi, Artin $L$-functions and normalization of intertwining operators, Ann. Sci. École Norm. Sup. (4) 21 (1988), no. 1, 67–89. MR 944102
- Henry H. Kim and Wook Kim, On local $L$-functions and normalized intertwining operators II; quasi-split groups, On certain $L$-functions, Clay Math. Proc., vol. 13, Amer. Math. Soc., Providence, RI, 2011, pp. 265–295. MR 2767519
- Anthony W. Knapp, Representation theory of semisimple groups, Princeton Mathematical Series, vol. 36, Princeton University Press, Princeton, NJ, 1986. An overview based on examples. MR 855239, DOI 10.1515/9781400883974
- Bertram Kostant, On the existence and irreducibility of certain series of representations, Bull. Amer. Math. Soc. 75 (1969), 627–642. MR 245725, DOI 10.1090/S0002-9904-1969-12235-4
- L. Lomelí, The Langlands-Shahidi method over function fields: The Ramanujan conjecture and Riemann hypothesis for the unitary groups, arXiv:1507.033625v5 (2017).
- Colette Mœglin and Jean-Loup Waldspurger, Décomposition spectrale et séries d’Eisenstein, Progress in Mathematics, vol. 113, Birkhäuser Verlag, Basel, 1994 (French, with English summary). Une paraphrase de l’Écriture. [A paraphrase of Scripture]. MR 1261867
- Gérard Schiffmann, Intégrales d’entrelacement et fonctions de Whittaker, Bull. Soc. Math. France 99 (1971), 3–72 (French). MR 311838
- Freydoon Shahidi, Local coefficients as Artin factors for real groups, Duke Math. J. 52 (1985), no. 4, 973–1007. MR 816396, DOI 10.1215/S0012-7094-85-05252-4
- Freydoon Shahidi, On the Ramanujan conjecture and finiteness of poles for certain $L$-functions, Ann. of Math. (2) 127 (1988), no. 3, 547–584. MR 942520, DOI 10.2307/2007005
- Freydoon Shahidi, A proof of Langlands’ conjecture on Plancherel measures; complementary series for $p$-adic groups, Ann. of Math. (2) 132 (1990), no. 2, 273–330. MR 1070599, DOI 10.2307/1971524
- Freydoon Shahidi, Langlands-Shahidi method, Automorphic forms and applications, IAS/Park City Math. Ser., vol. 12, Amer. Math. Soc., Providence, RI, 2007, pp. 299–330. MR 2331347, DOI 10.1090/pcms/012/06
- Freydoon Shahidi, Eisenstein series and automorphic $L$-functions, American Mathematical Society Colloquium Publications, vol. 58, American Mathematical Society, Providence, RI, 2010. MR 2683009, DOI 10.1090/coll/058
- J. Tate, Number theoretic background, Automorphic forms, representations and $L$-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977) Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, R.I., 1979, pp. 3–26. MR 546607
- J. Tits, Reductive groups over local fields, Automorphic forms, representations and $L$-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977) Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, R.I., 1979, pp. 29–69. MR 546588
Bibliographic Information
- Volker Heiermann
- Affiliation: Aix-Marseille Université, CNRS, Centrale Marseille, I2M, UMR 7373, 13453 Marseille, France
- MR Author ID: 351327
- Email: volker.heiermann@univ-amu.fr
- Received by editor(s): October 4, 2017
- Received by editor(s) in revised form: May 1, 2018
- Published electronically: September 17, 2018
- Additional Notes: The author benefitted from a grant of Agence Nationale de la Recherche with reference ANR-13-BS01-0012 FERPLAY
- Communicated by: Ken Ono
- © Copyright 2018 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 147 (2019), 115-124
- MSC (2010): Primary 11F70; Secondary 11F66, 22E55
- DOI: https://doi.org/10.1090/proc/14208
- MathSciNet review: 3876735