Existence of positive solutions for a class of semipositone quasilinear problems through Orlicz-Sobolev space
HTML articles powered by AMS MathViewer
- by Claudianor O. Alves, Angelo R. F. de Holanda and Jefferson A. Santos
- Proc. Amer. Math. Soc. 147 (2019), 285-299
- DOI: https://doi.org/10.1090/proc/14212
- Published electronically: October 18, 2018
- PDF | Request permission
Abstract:
In this paper we show the existence of weak solutions for a class of semipositone problems of the type \begin{equation}\tag {P} \left \{ \begin {array}{rclcl} -\Delta _{\Phi } u & = & f(u)-a & \mbox {in} & \Omega , \\ u(x)& > & 0 & \mbox {in} & \Omega , \\ u & = & 0 & \mbox {on} & \partial \Omega , \\ \end{array} \right . \end{equation} where $\Omega \subset \mathbb {R}^{N}$, $N \geq 2$, is a smooth bounded domain, $f:[0,+\infty ) \to \mathbb {R}$ is a continuous function with subcritical growth, $a>0$, and $\Delta _{\Phi } u$ stands for the $\Phi$-Laplacian operator. By using variational methods, we prove the existence of a solution for $a$ small enough.References
- Robert A. Adams and John J. F. Fournier, Sobolev spaces, 2nd ed., Pure and Applied Mathematics (Amsterdam), vol. 140, Elsevier/Academic Press, Amsterdam, 2003. MR 2424078
- Ismael Ali, Alfonso Castro, and R. Shivaji, Uniqueness and stability of nonnegative solutions for semipositone problems in a ball, Proc. Amer. Math. Soc. 117 (1993), no. 3, 775–782. MR 1116249, DOI 10.1090/S0002-9939-1993-1116249-5
- A. Ambrosetti, D. Arcoya, and B. Buffoni, Positive solutions for some semi-positone problems via bifurcation theory, Differential Integral Equations 7 (1994), no. 3-4, 655–663. MR 1270096
- W. Allegretto, P. Nistri, and P. Zecca, Positive solutions of elliptic nonpositone problems, Differential Integral Equations 5 (1992), no. 1, 95–101. MR 1141729
- Antonio Ambrosetti and Paul H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Functional Analysis 14 (1973), 349–381. MR 0370183, DOI 10.1016/0022-1236(73)90051-7
- V. Anuradha, D. D. Hai, and R. Shivaji, Existence results for superlinear semipositone BVP’s, Proc. Amer. Math. Soc. 124 (1996), no. 3, 757–763. MR 1317029, DOI 10.1090/S0002-9939-96-03256-X
- Scott Caldwell, Alfonso Castro, Ratnasingham Shivaji, and Sumalee Unsurangsie, Positive solutions for classes of multiparameter elliptic semipositone problems, Electron. J. Differential Equations (2007), No. 96, 10. MR 2328697
- Alfonso Castro, Djairo G. de Figueredo, and Emer Lopera, Existence of positive solutions for a semipositone $p$-Laplacian problem, Proc. Roy. Soc. Edinburgh Sect. A 146 (2016), no. 3, 475–482. MR 3507282, DOI 10.1017/S0308210515000657
- Alfonso Castro and R. Shivaji, Nonnegative solutions for a class of nonpositone problems, Proc. Roy. Soc. Edinburgh Sect. A 108 (1988), no. 3-4, 291–302. MR 943804, DOI 10.1017/S0308210500014670
- M. Chhetri, P. Drábek, and R. Shivaji, Existence of positive solutions for a class of $p$-Laplacian superlinear semipositone problems, Proc. Roy. Soc. Edinburgh Sect. A 145 (2015), no. 5, 925–936. MR 3406455, DOI 10.1017/S0308210515000220
- David G. Costa, Humberto Ramos Quoirin, and Hossein Tehrani, A variational approach to superlinear semipositone elliptic problems, Proc. Amer. Math. Soc. 145 (2017), no. 6, 2661–2675. MR 3626519, DOI 10.1090/proc/13426
- David G. Costa, Hossein Tehrani, and Jianfu Yang, On a variational approach to existence and multiplicity results for semipositone problems, Electron. J. Differential Equations (2006), No. 11, 10. MR 2198924
- Gianni Dal Maso and François Murat, Almost everywhere convergence of gradients of solutions to nonlinear elliptic systems, Nonlinear Anal. 31 (1998), no. 3-4, 405–412. MR 1487552, DOI 10.1016/S0362-546X(96)00317-3
- Thomas K. Donaldson and Neil S. Trudinger, Orlicz-Sobolev spaces and imbedding theorems, J. Functional Analysis 8 (1971), 52–75. MR 0301500, DOI 10.1016/0022-1236(71)90018-8
- Abdou K. Drame and David G. Costa, On positive solutions of one-dimensional semipositone equations with nonlinear boundary conditions, Appl. Math. Lett. 25 (2012), no. 12, 2411–2416. MR 2967854, DOI 10.1016/j.aml.2012.07.015
- Nobuyoshi Fukagai, Masayuki Ito, and Kimiaki Narukawa, Positive solutions of quasilinear elliptic equations with critical Orlicz-Sobolev nonlinearity on $\mathbf R^N$, Funkcial. Ekvac. 49 (2006), no. 2, 235–267. MR 2271234, DOI 10.1619/fesi.49.235
- Nobuyoshi Fukagai and Kimiaki Narukawa, On the existence of multiple positive solutions of quasilinear elliptic eigenvalue problems, Ann. Mat. Pura Appl. (4) 186 (2007), no. 3, 539–564. MR 2317653, DOI 10.1007/s10231-006-0018-x
- J.P. Gossez, Orlicz-Sobolev spaces and nonlinear elliptic boundary value problems. Nonlinear Analysis, Function Spaces and Applications. Leipzig: BSB B. G. Teubner Verlagsgesellschaft, 1979. 59-94. $<$http://eudml.org/doc/220389$>$
- Mohammed Guedda and Laurent Véron, Quasilinear elliptic equations involving critical Sobolev exponents, Nonlinear Anal. 13 (1989), no. 8, 879–902. MR 1009077, DOI 10.1016/0362-546X(89)90020-5
- Gary M. Lieberman, Boundary regularity for solutions of degenerate elliptic equations, Nonlinear Anal. 12 (1988), no. 11, 1203–1219. MR 969499, DOI 10.1016/0362-546X(88)90053-3
- Gary M. Lieberman, The natural generalization of the natural conditions of Ladyzhenskaya and Ural′tseva for elliptic equations, Comm. Partial Differential Equations 16 (1991), no. 2-3, 311–361. MR 1104103, DOI 10.1080/03605309108820761
- Inder K. Rana, An introduction to measure and integration, 2nd ed., Graduate Studies in Mathematics, vol. 45, American Mathematical Society, Providence, RI, 2002. MR 1934675, DOI 10.1090/gsm/045
- M. M. Rao and Z. D. Ren, Theory of Orlicz spaces, Monographs and Textbooks in Pure and Applied Mathematics, vol. 146, Marcel Dekker, Inc., New York, 1991. MR 1113700
- Zhong Tan and Fei Fang, Orlicz-Sobolev versus Hölder local minimizer and multiplicity results for quasilinear elliptic equations, J. Math. Anal. Appl. 402 (2013), no. 1, 348–370. MR 3023263, DOI 10.1016/j.jmaa.2013.01.029
Bibliographic Information
- Claudianor O. Alves
- Affiliation: Unidade Acadêmica de Matemática, Universidade Federal de Campina Grande, CEP: 58429-900, Campina Grande - PB, Brazil
- MR Author ID: 610236
- Email: coalves@mat.ufcg.edu.br
- Angelo R. F. de Holanda
- Affiliation: Unidade Acadêmica de Matemática, Universidade Federal de Campina Grande, CEP: 58429-900, Campina Grande - PB, Brazil
- Email: angelo@mat.ufcg.edu.br
- Jefferson A. Santos
- Affiliation: Unidade Acadêmica de Matemática, Universidade Federal de Campina Grande, CEP: 58429-900, Campina Grande - PB, Brazil
- Email: jefferson@mat.ufcg.edu.br
- Received by editor(s): January 25, 2018
- Received by editor(s) in revised form: April 11, 2018, and April 28, 2018
- Published electronically: October 18, 2018
- Additional Notes: The first author was supported in part by CNPq/Brazil 304804/2017-7.
- Communicated by: Joachim Krieger
- © Copyright 2018 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 147 (2019), 285-299
- MSC (2010): Primary 35A15, 35J62, 46E30
- DOI: https://doi.org/10.1090/proc/14212
- MathSciNet review: 3876749