Neumann Li-Yau gradient estimate under integral Ricci curvature bounds
HTML articles powered by AMS MathViewer
- by Xavier Ramos Olivé
- Proc. Amer. Math. Soc. 147 (2019), 411-426
- DOI: https://doi.org/10.1090/proc/14213
- Published electronically: September 17, 2018
- PDF | Request permission
Abstract:
We prove a Li-Yau gradient estimate for positive solutions to the heat equation, with Neumann boundary conditions, on a compact Riemannian submanifold with boundary $\textbf {M}^n\subseteq \textbf {N}^n$, satisfying the integral Ricci curvature assumption: \begin{equation} D^2 \sup _{x\in \textbf {N}} \left ( \oint _{B(x,D)} |Ric^-|^p dy \right )^{\frac {1}{p}} < K \end{equation} for $K(n,p)$ small enough, $p>n/2$, and $diam(\textbf {M})\leq D$. The boundary of $\textbf {M}$ is not necessarily convex, but it needs to satisfy the interior rolling $R-$ball condition.References
- Mihai Bailesteanu, Xiaodong Cao, and Artem Pulemotov, Gradient estimates for the heat equation under the Ricci flow, J. Funct. Anal. 258 (2010), no. 10, 3517–3542. MR 2601627, DOI 10.1016/j.jfa.2009.12.003
- Gilles Carron, Geometric inequalities for manifolds with Ricci curvature in the Kato class, (2016) arXiv:1612.03027.
- Roger Chen, Neumann eigenvalue estimate on a compact Riemannian manifold, Proc. Amer. Math. Soc. 108 (1990), no. 4, 961–970. MR 993745, DOI 10.1090/S0002-9939-1990-0993745-X
- Mourad Choulli, Laurent Kayser, and El Maati Ouhabaz, Observations on Gaussian upper bounds for Neumann heat kernels, Bull. Aust. Math. Soc. 92 (2015), no. 3, 429–439. MR 3415619, DOI 10.1017/S0004972715000611
- Xianzhe Dai, Guofang Wei, and Zhenlei Zhang, Local Sobolev constant estimate for integral Ricci curvature bounds, Adv. Math. 325 (2018), 1–33. MR 3742584, DOI 10.1016/j.aim.2017.11.024
- Peter Li and Shing-Tung Yau, On the parabolic kernel of the Schrödinger operator, Acta Math. 156 (1986), no. 3-4, 153–201. MR 834612, DOI 10.1007/BF02399203
- P. Petersen and G. Wei, Relative volume comparison with integral curvature bounds, Geom. Funct. Anal. 7 (1997), no. 6, 1031–1045. MR 1487753, DOI 10.1007/s000390050036
- Peter Petersen and Guofang Wei, Analysis and geometry on manifolds with integral Ricci curvature bounds. II, Trans. Amer. Math. Soc. 353 (2001), no. 2, 457–478. MR 1709777, DOI 10.1090/S0002-9947-00-02621-0
- Christian Rose, Heat kernel estimates based on Ricci curvature integral bounds, Universitätsverlag Chemnitz, 2017, ISBN 978-3-96100-032-6.
- Christian Rose, Heat kernel upper bound on Riemannian manifolds with locally uniform Ricci curvature integral bounds, J. Geom. Anal. 27 (2017), no. 2, 1737–1750. MR 3625171, DOI 10.1007/s12220-016-9738-3
- Christian Rose, Li-Yau gradient estimate for compact manifolds with negative part of Ricci curvature in the Kato class, (2016) arXiv:1608.04221.
- Jiaping Wang, Global heat kernel estimates, Pacific J. Math. 178 (1997), no. 2, 377–398. MR 1447421, DOI 10.2140/pjm.1997.178.377
- Qi S. Zhang, Some gradient estimates for the heat equation on domains and for an equation by Perelman, Int. Math. Res. Not. , posted on (2006), Art. ID 92314, 39. MR 2250008, DOI 10.1155/IMRN/2006/92314
- Qi S. Zhang and Meng Zhu, Li-Yau gradient bounds on compact manifolds under nearly optimal curvature conditions, J. Funct. Anal. 275 (2018), no. 2, 478–515. MR 3802491, DOI 10.1016/j.jfa.2018.02.001
- Qi S. Zhang and Meng Zhu, Li-Yau gradient bound for collapsing manifolds under integral curvature condition, Proc. Amer. Math. Soc. 145 (2017), no. 7, 3117–3126. MR 3637958, DOI 10.1090/proc/13418
Bibliographic Information
- Xavier Ramos Olivé
- Affiliation: Department of Mathematics, University of California, Riverside, Riverside, California 92521
- ORCID: 0000-0003-3656-1822
- Email: olive@math.ucr.edu
- Received by editor(s): April 12, 2018
- Received by editor(s) in revised form: April 25, 2018
- Published electronically: September 17, 2018
- Communicated by: Guofang Wei
- © Copyright 2018 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 147 (2019), 411-426
- MSC (2010): Primary 58J32, 58J35
- DOI: https://doi.org/10.1090/proc/14213
- MathSciNet review: 3876759