On the real zeros of random trigonometric polynomials with dependent coefficients
Authors:
Jürgen Angst, Federico Dalmao and Guillaume Poly
Journal:
Proc. Amer. Math. Soc. 147 (2019), 205-214
MSC (2010):
Primary 26C10; Secondary 30C15, 42A05
DOI:
https://doi.org/10.1090/proc/14216
Published electronically:
October 3, 2018
MathSciNet review:
3876743
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: We consider random trigonometric polynomials of the form






![$ N_n([0,2\pi ])$](images/img7.gif)

![$ [0,2\pi ]$](images/img9.gif)
![$\displaystyle \lim _{n \to +\infty } \frac {\mathbb{E}\left [N_n([0,2\pi ])\right ]}{n} = \frac {2}{\sqrt {3}}. $](images/img10.gif)
- [ADL$^+$15] Jean-Marc Azaïs, Federico Dalmao, José León, Ivan Nourdin, and Guillaume Poly, Local universality of the number of zeros of random trigonometric polynomials with continuous coefficients, arXiv:1512.05583, 2015.
- [ADL16] Jean-Marc Azaïs, Federico Dalmao, and José R. León, CLT for the zeros of classical random trigonometric polynomials, Ann. Inst. Henri Poincaré Probab. Stat. 52 (2016), no. 2, 804–820 (English, with English and French summaries). MR 3498010, https://doi.org/10.1214/14-AIHP653
- [AL13] Jean-Marc Azaïs and José R. León, CLT for crossings of random trigonometric polynomials, Electron. J. Probab. 18 (2013), no. 68, 17. MR 3084654, https://doi.org/10.1214/EJP.v18-2403
- [AP15] Jürgen Angst and Guillaume Poly, Universality of the mean number of real zeros of random trigonometric polynomials under a weak cramér condition, arXiv:1511.08750, 2015.
- [Bar64] N. K. Bary, A treatise on trigonometric series. Vols. I, II, Authorized translation by Margaret F. Mullins. A Pergamon Press Book, The Macmillan Co., New York, 1964. MR 0171116
- [Ber94] Jan Beran, Statistics for long-memory processes, Monographs on Statistics and Applied Probability, vol. 61, Chapman and Hall, New York, 1994. MR 1304490
- [BNS17] Alexander Borichev, Alon Nishry, and Mikhail Sodin, Entire functions of exponential type represented by pseudo-random and random Taylor series, J. Anal. Math. 133 (2017), 361–396. MR 3736496, https://doi.org/10.1007/s11854-017-0037-0
- [Dun66] J. E. A. Dunnage, The number of real zeros of a random trigonometric polynomial, Proc. London Math. Soc. (3) 16 (1966), 53–84. MR 0192532, https://doi.org/10.1112/plms/s3-16.1.53
- [EK95] Alan Edelman and Eric Kostlan, How many zeros of a random polynomial are real?, Bull. Amer. Math. Soc. (N.S.) 32 (1995), no. 1, 1–37. MR 1290398, https://doi.org/10.1090/S0273-0979-1995-00571-9
- [EO56] Paul Erdös and A. C. Offord, On the number of real roots of a random algebraic equation, Proc. London Math. Soc. (3) 6 (1956), 139–160. MR 0073870, https://doi.org/10.1112/plms/s3-6.1.139
- [Far86] Kambiz Farahmand, On the average number of real roots of a random algebraic equation, Ann. Probab. 14 (1986), no. 2, 702–709. MR 832032
- [Far97] K. Farahmand, On the variance of the number of real zeros of a random trigonometric polynomial, J. Appl. Math. Stochastic Anal. 10 (1997), no. 1, 57–66. MR 1437951, https://doi.org/10.1155/S1048953397000051
- [Far98] Kambiz Farahmand, Topics in random polynomials, Pitman Research Notes in Mathematics Series, vol. 393, Longman, Harlow, 1998. MR 1679392
- [Fla17] Hendrik Flasche, Expected number of real roots of random trigonometric polynomials, Stochastic Process. Appl. 127 (2017), no. 12, 3928–3942. MR 3718101, https://doi.org/10.1016/j.spa.2017.03.018
- [Gle89] Richard Glendinning, The growth of the expected number of real zeros of a random polynomial, J. Austral. Math. Soc. Ser. A 46 (1989), no. 1, 100–121. MR 966287
- [Gra08] Loukas Grafakos, Classical Fourier analysis, 2nd ed., Graduate Texts in Mathematics, vol. 249, Springer, New York, 2008. MR 2445437
- [GW11] Andrew Granville and Igor Wigman, The distribution of the zeros of random trigonometric polynomials, Amer. J. Math. 133 (2011), no. 2, 295–357. MR 2797349, https://doi.org/10.1353/ajm.2011.0015
- [IKM16] Alexander Iksanov, Zakhar Kabluchko, and Alexander Marynych, Local universality for real roots of random trigonometric polynomials, Electron. J. Probab. 21 (2016), Paper No. 63, 19. MR 3563891, https://doi.org/10.1214/16-EJP9
- [IM68] I. A. Ibragimov and N. B. Maslova, The average number of zeros of random polynomials, Vestnik Leningrad. Univ. 23 (1968), no. 19, 171–172 (Russian, with English summary). MR 0238376
- [IM71] I. A. Ibragimov and N. B. Maslova, The mean number of real zeros of random polynomials. I. Coefficients with zero mean, Teor. Verojatnost. i Primenen. 16 (1971), 229–248 (Russian, with English summary). MR 0286157
- [Kac43] M. Kac, On the average number of real roots of a random algebraic equation, Bull. Amer. Math. Soc. 49 (1943), 314–320. MR 7812, https://doi.org/10.1090/S0002-9904-1943-07912-8
- [Kac49] M. Kac, On the average number of real roots of a random algebraic equation. II, Proc. London Math. Soc. (2) 50 (1949), 390–408. MR 30713, https://doi.org/10.1112/plms/s2-50.5.390
- [LO38] J. E. Littlewood and A. C. Offord, On the Number of Real Roots of a Random Algebraic Equation, J. London Math. Soc. 13 (1938), no. 4, 288–295. MR 1574980, https://doi.org/10.1112/jlms/s1-13.4.288
- [RS84] N. Renganathan and M. Sambandham, On the average number of real zeros of a random trigonometric polynomial with dependent coefficients. II, Indian J. Pure Appl. Math. 15 (1984), no. 9, 951–956. MR 761283
- [Sam78] M. Sambandham, On the number of real zeros of a random trigonometric polynomial, Trans. Amer. Math. Soc. 238 (1978), 57–70. MR 461648, https://doi.org/10.1090/S0002-9947-1978-0461648-4
- [ZF03] A. Zygmund, Trigonometric series: Vols. I, II, Second edition, reprinted with corrections and some additions, Cambridge University Press, London-New York, 1968. MR 0236587
Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 26C10, 30C15, 42A05
Retrieve articles in all journals with MSC (2010): 26C10, 30C15, 42A05
Additional Information
Jürgen Angst
Affiliation:
Institut de recherche mathématiques de Rennes, Université de Rennes 1 35042, Rennes 1, France
Email:
jurgen.angst@univ-rennes1.fr
Federico Dalmao
Affiliation:
Departamento de Matematico y Estadistica del Litoral, Universidad de la Republica, 25 de agosto 281, 50000 Salto, Uruguay
Email:
fdalmao@unorte.edu.uy
Guillaume Poly
Affiliation:
Institut de recherche mathématiques de Rennes, Université de Rennes 1 35042, Rennes 1, France
Email:
guillaume.poly@univ-rennes1.fr
DOI:
https://doi.org/10.1090/proc/14216
Received by editor(s):
June 6, 2017
Received by editor(s) in revised form:
April 3, 2018
Published electronically:
October 3, 2018
Additional Notes:
This work was supported by the ANR grant UNIRANDOM
Communicated by:
David Levin
Article copyright:
© Copyright 2018
American Mathematical Society