Bergman–Toeplitz operators on fat Hartogs triangles
HTML articles powered by AMS MathViewer
- by Tran Vu Khanh, Jiakun Liu and Phung Trong Thuc
- Proc. Amer. Math. Soc. 147 (2019), 327-338
- DOI: https://doi.org/10.1090/proc/14218
- Published electronically: October 3, 2018
- PDF | Request permission
Abstract:
In this paper, we obtain some $L^{p}$ mapping properties of the Berg- man–Toeplitz operator \[ f\longrightarrow T_{K^{-\alpha }}\left (f\right ):=\intop _{\Omega }K_{\Omega }\left (\cdot ,w\right )K^{-\alpha }\left (w,w\right )f\left (w\right )dV(w) \] on fat Hartogs triangles $\Omega _{k}:=\left \{ \left (z_{1},z_{2}\right )\in \mathbb {C}^{2}:\left |z_{1}\right |^{k}<\left |z_{2}\right |<1\right \}$, where $\alpha \in \mathbb {R}$ and $k\in \mathbb Z^+$.References
- Zbigniew Błocki, The Bergman metric and the pluricomplex Green function, Trans. Amer. Math. Soc. 357 (2005), no. 7, 2613–2625. MR 2139520, DOI 10.1090/S0002-9947-05-03738-4
- Zbigniew Błocki, Cauchy-Riemann meet Monge-Ampère, Bull. Math. Sci. 4 (2014), no. 3, 433–480. MR 3277882, DOI 10.1007/s13373-014-0058-2
- Zbigniew Blocki, A lower bound for the Bergman kernel and the Bourgain-Milman inequality, Geometric aspects of functional analysis, Lecture Notes in Math., vol. 2116, Springer, Cham, 2014, pp. 53–63. MR 3364678, DOI 10.1007/978-3-319-09477-9_{4}
- Magnus Carlehed, Urban Cegrell, and Frank Wikström, Jensen measures, hyperconvexity and boundary behaviour of the pluricomplex Green function, Ann. Polon. Math. 71 (1999), no. 1, 87–103. MR 1684047, DOI 10.4064/ap-71-1-87-103
- Debraj Chakrabarti and Mei-Chi Shaw, Sobolev regularity of the $\overline {\partial }$-equation on the Hartogs triangle, Math. Ann. 356 (2013), no. 1, 241–258. MR 3038129, DOI 10.1007/s00208-012-0840-y
- Debraj Chakrabarti and Yunus E. Zeytuncu, $L^p$ mapping properties of the Bergman projection on the Hartogs triangle, Proc. Amer. Math. Soc. 144 (2016), no. 4, 1643–1653. MR 3451240, DOI 10.1090/proc/12820
- Philippe Charpentier and Yves Dupain, Estimates for the Bergman and Szegö projections for pseudoconvex domains of finite type with locally diagonalizable Levi form, Publ. Mat. 50 (2006), no. 2, 413–446. MR 2273668, DOI 10.5565/PUBLMAT_{5}0206_{0}8
- Bo-Yong Chen and Siqi Fu, Comparison of the Bergman and Szegö kernels, Adv. Math. 228 (2011), no. 4, 2366–2384. MR 2836124, DOI 10.1016/j.aim.2011.07.013
- Liwei Chen, The $L^p$ boundedness of the Bergman projection for a class of bounded Hartogs domains, J. Math. Anal. Appl. 448 (2017), no. 1, 598–610. MR 3579901, DOI 10.1016/j.jmaa.2016.11.024
- Luke D. Edholm, Bergman theory of certain generalized Hartogs triangles, Pacific J. Math. 284 (2016), no. 2, 327–342. MR 3544303, DOI 10.2140/pjm.2016.284.327
- L. D. Edholm and J. D. McNeal, The Bergman projection on fat Hartogs triangles: $L^p$ boundedness, Proc. Amer. Math. Soc. 144 (2016), no. 5, 2185–2196. MR 3460177, DOI 10.1090/proc/12878
- L. D. Edholm and J. D. McNeal, Bergman subspaces and subkernels: degenerate $L^p$ mapping and zeroes, J. Geom. Anal. 27 (2017), no. 4, 2658–2683. MR 3707989, DOI 10.1007/s12220-017-9777-4
- P. Harrington and Y. Zeytuncu, ${L}^p$ mapping properties for the Cauchy–Riemann equations on Lipschitz domains admitting subelliptic estimates, Complex Variables and Elliptic Equations, 2018, DOI: 10.1080/17476933.2018.1434628.
- Gregor Herbort, The Bergman metric on hyperconvex domains, Math. Z. 232 (1999), no. 1, 183–196. MR 1714284, DOI 10.1007/PL00004754
- T. V. Khanh, J. Liu, and P. T. Thuc, Bergman–Toeplitz operators on weakly pseudoconvex domains, Math. Z., (2018). DOI 10.1007/s00209-018-2096-z, arXiv:1710.10761.
- Maciej Klimek, Pluripotential theory, London Mathematical Society Monographs. New Series, vol. 6, The Clarendon Press, Oxford University Press, New York, 1991. Oxford Science Publications. MR 1150978
- Maciej Klimek, Invariant pluricomplex Green functions, Topics in complex analysis (Warsaw, 1992) Banach Center Publ., vol. 31, Polish Acad. Sci. Inst. Math., Warsaw, 1995, pp. 207–226. MR 1341390
- J. D. McNeal and E. M. Stein, Mapping properties of the Bergman projection on convex domains of finite type, Duke Math. J. 73 (1994), no. 1, 177–199. MR 1257282, DOI 10.1215/S0012-7094-94-07307-9
- Jeffery D. McNeal, Boundary behavior of the Bergman kernel function in $\textbf {C}^2$, Duke Math. J. 58 (1989), no. 2, 499–512. MR 1016431, DOI 10.1215/S0012-7094-89-05822-5
- D. H. Phong and E. M. Stein, Estimates for the Bergman and Szegö projections on strongly pseudo-convex domains, Duke Math. J. 44 (1977), no. 3, 695–704. MR 450623
- Włodzimierz Zwonek, On Bergman completeness of pseudoconvex Reinhardt domains, Ann. Fac. Sci. Toulouse Math. (6) 8 (1999), no. 3, 537–552 (English, with English and French summaries). MR 1751175
Bibliographic Information
- Tran Vu Khanh
- Affiliation: Institute for Mathematics and its Applications, School of Mathematics and Applied Statistics, University of Wollongong, Wollongong, NSW 2522, Australia
- MR Author ID: 815734
- Email: tkhanh@uow.edu.au
- Jiakun Liu
- Affiliation: Institute for Mathematics and its Applications, School of Mathematics and Applied Statistics, University of Wollongong, Wollongong, NSW 2522, Australia
- MR Author ID: 862211
- ORCID: 0000-0003-4409-4187
- Email: jiakunl@uow.edu.au
- Phung Trong Thuc
- Affiliation: Institute for Mathematics and its Applications, School of Mathematics and Applied Statistics, University of Wollongong, Wollongong, NSW 2522, Australia
- MR Author ID: 983082
- Email: ttp754@uowmail.edu.au
- Received by editor(s): February 26, 2018
- Received by editor(s) in revised form: May 6, 2018
- Published electronically: October 3, 2018
- Additional Notes: The first author was supported by ARC grant DE160100173
The second author was supported by ARC grant DP170100929
The third author was supported by a PhD scholarship in ARC grant DE140101366 - Communicated by: Harold P. Boas
- © Copyright 2018 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 147 (2019), 327-338
- MSC (2010): Primary 32A25; Secondary 32A36
- DOI: https://doi.org/10.1090/proc/14218
- MathSciNet review: 3876752