A two-parameter class of completely monotonic functions
HTML articles powered by AMS MathViewer
- by Horst Alzer and Man Kam Kwong
- Proc. Amer. Math. Soc. 147 (2019), 191-204
- DOI: https://doi.org/10.1090/proc/14273
- Published electronically: October 12, 2018
- PDF | Request permission
Abstract:
Let $b\in \mathbb {R}$, let $c>0$, let $x> 0$, and let \begin{equation*} G_{b,c}(x)=\frac {e^{-x}}{x^b}P_c(x) \quad \mbox {with} \quad P_c(x)=\sum _{k=0}^\infty \frac {x^k}{\Gamma (c+k)}. \end{equation*} We prove that $G_{b,c}$ is completely monotonic on $(0,\infty )$ if and only if $b\geq 0$ and $b+c\geq 1$. Moreover, we present various functional inequalities for $P_c$. Among others, we show that if $c\in (0,1)$, then, for $x,y>0$ we have \begin{equation*} e< \frac { P_c(1/x)^x P_c(1/y)^y }{ P_c(1/(x+y))^{x+y}}. \end{equation*} If $c>1$, then the reverse inequality holds for $x,y>0$. In both cases, the constant bound $e$ is best possible.References
- Horst Alzer and Christian Berg, Some classes of completely monotonic functions, Ann. Acad. Sci. Fenn. Math. 27 (2002), no. 2, 445–460. MR 1922200
- Horst Alzer and Christian Berg, Some classes of completely monotonic functions. II, Ramanujan J. 11 (2006), no. 2, 225–248. MR 2267677, DOI 10.1007/s11139-006-6510-5
- Joaquin Bustoz and Mourad E. H. Ismail, On gamma function inequalities, Math. Comp. 47 (1986), no. 176, 659–667. MR 856710, DOI 10.1090/S0025-5718-1986-0856710-6
- M. J. Dubourdieu, Sur un théorème de M. S. Bernstein relatif à la transformation de Laplace-Stieltjes, Compositio Math. 7 (1939), 96–111 (French). MR 436
- Árpád Elbert and Andrea Laforgia, An inequality for the product of two integrals relating to the incomplete gamma function, J. Inequal. Appl. 5 (2000), no. 1, 39–51. MR 1740211, DOI 10.1155/S1025583400000035
- A. M. Fink, Kolmogorov-Landau inequalities for monotone functions, J. Math. Anal. Appl. 90 (1982), no. 1, 251–258. MR 680877, DOI 10.1016/0022-247X(82)90057-9
- Walter Gautschi, Some elementary inequalities relating to the gamma and incomplete gamma function, J. Math. and Phys. 38 (1959/60), 77–81. MR 103289, DOI 10.1002/sapm195938177
- Mourad E. H. Ismail and Andrea Laforgia, Monotonicity properties of determinants of special functions, Constr. Approx. 26 (2007), no. 1, 1–9. MR 2310684, DOI 10.1007/s00365-005-0627-4
- Mourad E. H. Ismail, Lee Lorch, and Martin E. Muldoon, Completely monotonic functions associated with the gamma function and its $q$-analogues, J. Math. Anal. Appl. 116 (1986), no. 1, 1–9. MR 837337, DOI 10.1016/0022-247X(86)90042-9
- A. Laforgia and P. Natalini, Supplements to known monotonicity results and inequalities for the gamma and incomplete gamma functions, J. Inequal. Appl. , posted on (2006), Art. ID 48727, 8. MR 2215490, DOI 10.1155/JIA/2006/48727
- Lee Lorch, A property of completely [absolutely] monotonic and other logarithmically convex [concave] functions, Indian J. Math. 45 (2003), no. 2, 207–210. MR 2035907
- Lee Lorch and Donald J. Newman, On the composition of completely monotonic functions and completely monotonic sequences and related questions, J. London Math. Soc. (2) 28 (1983), no. 1, 31–45. MR 703462, DOI 10.1112/jlms/s2-28.1.31
- K. S. Miller and S. G. Samko, Completely monotonic functions, Integral Transform. Spec. Funct. 12 (2001), no. 4, 389–402. MR 1872377, DOI 10.1080/10652460108819360
- D. S. Mitrinović, Analytic inequalities, Die Grundlehren der mathematischen Wissenschaften, Band 165, Springer-Verlag, New York-Berlin, 1970. In cooperation with P. M. Vasić. MR 0274686
- M. Petrović, Sur une équation fonctionnelle, Publ. Math. Univ. Belgrade 1 (1932), 149-156.
- Thomas Simon, Mittag-Leffler functions and complete monotonicity, Integral Transforms Spec. Funct. 26 (2015), no. 1, 36–50. MR 3275447, DOI 10.1080/10652469.2014.965704
- David Vernon Widder, The Laplace Transform, Princeton Mathematical Series, vol. 6, Princeton University Press, Princeton, N. J., 1941. MR 0005923
Bibliographic Information
- Horst Alzer
- Affiliation: Morsbacher Straße 10, 51545 Waldbröl, Germany
- MR Author ID: 238846
- Email: h.alzer@gmx.de
- Man Kam Kwong
- Affiliation: Department of Applied Mathematics, The Hong Kong Polytechnic University, Hunghom, Hong Kong
- MR Author ID: 108745
- ORCID: 0000-0003-0808-0925
- Email: mankwong@connect.polyu.hk
- Received by editor(s): March 13, 2018
- Published electronically: October 12, 2018
- Communicated by: Mourad Ismail
- © Copyright 2018 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 147 (2019), 191-204
- MSC (2010): Primary 26A48, 26A51, 26D07
- DOI: https://doi.org/10.1090/proc/14273
- MathSciNet review: 3876742