Independence of iterated Whitehead doubles
HTML articles powered by AMS MathViewer
- by Juanita Pinzón-Caicedo
- Proc. Amer. Math. Soc. 147 (2019), 1313-1324
- DOI: https://doi.org/10.1090/proc/14261
- Published electronically: November 16, 2018
- PDF | Request permission
Abstract:
A theorem of Furuta and Fintushel-Stern provides a criterion for a collection of Seifert fiberd homology spheres to be independent in the homology cobordism group of oriented homology 3-spheres. In this article we use these results and some 4-dimensional constructions to produce infinite families of positive torus knots whose iterated Whitehead doubles are independent in the smooth concordance group.References
- S. Akbulut, Observation, CBMS conference at Santa Barbara, 1983.
- Selman Akbulut, 4-manifolds, Oxford Graduate Texts in Mathematics, vol. 25, Oxford University Press, Oxford, 2016. MR 3559604, DOI 10.1093/acprof:oso/9780198784869.001.0001
- Tim D. Cochran and Robert E. Gompf, Applications of Donaldson’s theorems to classical knot concordance, homology $3$-spheres and property $P$, Topology 27 (1988), no. 4, 495–512. MR 976591, DOI 10.1016/0040-9383(88)90028-6
- S. K. Donaldson, An application of gauge theory to four-dimensional topology, J. Differential Geom. 18 (1983), no. 2, 279–315. MR 710056
- S. K. Donaldson, Self-dual connections and the topology of smooth $4$-manifolds, Bull. Amer. Math. Soc. (N.S.) 8 (1983), no. 1, 81–83. MR 682827, DOI 10.1090/S0273-0979-1983-15090-5
- S. K. Donaldson, The orientation of Yang-Mills moduli spaces and $4$-manifold topology, J. Differential Geom. 26 (1987), no. 3, 397–428. MR 910015
- Rob Kirby (ed.), Problems in low-dimensional topology, Geometric topology (Athens, GA, 1993) AMS/IP Stud. Adv. Math., vol. 2, Amer. Math. Soc., Providence, RI, 1997, pp. 35–473. MR 1470751, DOI 10.1090/amsip/002.2/02
- Hisaaki Endo, Linear independence of topologically slice knots in the smooth cobordism group, Topology Appl. 63 (1995), no. 3, 257–262. MR 1334309, DOI 10.1016/0166-8641(94)00062-8
- Ronald Fintushel and Ronald J. Stern, Instanton homology of Seifert fibred homology three spheres, Proc. London Math. Soc. (3) 61 (1990), no. 1, 109–137. MR 1051101, DOI 10.1112/plms/s3-61.1.109
- Michael Hartley Freedman, The topology of four-dimensional manifolds, J. Differential Geometry 17 (1982), no. 3, 357–453. MR 679066
- Michael H. Freedman, The disk theorem for four-dimensional manifolds, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Warsaw, 1983) PWN, Warsaw, 1984, pp. 647–663. MR 804721
- Michael H. Freedman and Frank Quinn, Topology of 4-manifolds, Princeton Mathematical Series, vol. 39, Princeton University Press, Princeton, NJ, 1990. MR 1201584
- Mikio Furuta, Homology cobordism group of homology $3$-spheres, Invent. Math. 100 (1990), no. 2, 339–355. MR 1047138, DOI 10.1007/BF01231190
- Allen Hatcher, Algebraic topology, Cambridge University Press, Cambridge, 2002. MR 1867354
- Matthew Hedden, Knot Floer homology of Whitehead doubles, Geom. Topol. 11 (2007), 2277–2338. MR 2372849, DOI 10.2140/gt.2007.11.2277
- Matthew Hedden and Paul Kirk, Instantons, concordance, and Whitehead doubling, J. Differential Geom. 91 (2012), no. 2, 281–319. MR 2971290
- Jim Hoste, A formula for Casson’s invariant, Trans. Amer. Math. Soc. 297 (1986), no. 2, 547–562. MR 854084, DOI 10.1090/S0002-9947-1986-0854084-4
- Charles Livingston and Paul Melvin, Abelian invariants of satellite knots, Geometry and topology (College Park, Md., 1983/84) Lecture Notes in Math., vol. 1167, Springer, Berlin, 1985, pp. 217–227. MR 827271, DOI 10.1007/BFb0075225
- Louise Moser, Elementary surgery along a torus knot, Pacific J. Math. 38 (1971), 737–745. MR 383406
- Kunio Murasugi, Knot theory & its applications, Modern Birkhäuser Classics, Birkhäuser Boston, Inc., Boston, MA, 2008. Translated from the 1993 Japanese original by Bohdan Kurpita; Reprint of the 1996 translation [MR1391727]. MR 2347576, DOI 10.1007/978-0-8176-4719-3
- Walter D. Neumann and Don Zagier, A note on an invariant of Fintushel and Stern, Geometry and topology (College Park, Md., 1983/84) Lecture Notes in Math., vol. 1167, Springer, Berlin, 1985, pp. 241–244. MR 827273, DOI 10.1007/BFb0075227
- Kyungbae Park, On independence of iterated Whitehead doubles in the knot concordance group, J. Knot Theory Ramifications 27 (2018), no. 1, 1850003, 17. MR 3749499, DOI 10.1142/S0218216518500037
- Juanita Pinzón-Caicedo, Independence of satellites of torus knots in the smooth concordance group, Geom. Topol. 21 (2017), no. 6, 3191–3211. MR 3692965, DOI 10.2140/gt.2017.21.3191
- Lee Rudolph, Quasipositivity as an obstruction to sliceness, Bull. Amer. Math. Soc. (N.S.) 29 (1993), no. 1, 51–59. MR 1193540, DOI 10.1090/S0273-0979-1993-00397-5
- Lee Rudolph, An obstruction to sliceness via contact geometry and “classical” gauge theory, Invent. Math. 119 (1995), no. 1, 155–163. MR 1309974, DOI 10.1007/BF01245177
- Nikolai Saveliev, Invariants for homology $3$-spheres, Encyclopaedia of Mathematical Sciences, vol. 140, Springer-Verlag, Berlin, 2002. Low-Dimensional Topology, I. MR 1941324, DOI 10.1007/978-3-662-04705-7
- H. Seifert, On the homology invariants of knots, Quart. J. Math. Oxford Ser. (2) 1 (1950), 23–32. MR 35436, DOI 10.1093/qmath/1.1.23
- W. Thurston, Geometry and topology of three-manifolds, 1978, URL http://library.msri.org/books/gt3m/.
Bibliographic Information
- Juanita Pinzón-Caicedo
- Affiliation: Department of Mathematics, North Carolina State University, Raleigh, North Carolina 27695
- Email: jpinzon@ncsu.edu
- Received by editor(s): January 9, 2018
- Received by editor(s) in revised form: May 22, 2018
- Published electronically: November 16, 2018
- Communicated by: David Futer
- © Copyright 2018 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 147 (2019), 1313-1324
- MSC (2010): Primary 57M25, 57M27, 57N70, 57Q60
- DOI: https://doi.org/10.1090/proc/14261
- MathSciNet review: 3896076