On the first and second eigenvalue of finite and infinite uniform hypergraphs
HTML articles powered by AMS MathViewer
- by Hong-Hai Li and Bojan Mohar
- Proc. Amer. Math. Soc. 147 (2019), 933-946
- DOI: https://doi.org/10.1090/proc/14274
- Published electronically: November 16, 2018
- PDF | Request permission
Abstract:
Lower bounds for the first and the second eigenvalue of uniform regular hypergraphs are obtained. One of these bounds is a generalization of the Alon–Boppana Theorem to hypergraphs.References
- N. Alon, Eigenvalues and expanders, Combinatorica 6 (1986), no. 2, 83–96. Theory of computing (Singer Island, Fla., 1984). MR 875835, DOI 10.1007/BF02579166
- Changjiang Bu, Xu Zhang, Jiang Zhou, Wenzhe Wang, and Yimin Wei, The inverse, rank and product of tensors, Linear Algebra Appl. 446 (2014), 269–280. MR 3163144, DOI 10.1016/j.laa.2013.12.015
- Umit V. Catalyurek and Cevdet Aykanat, Hypergraph-partitioning-based decomposition for parallel sparse-matrix vector multiplication, Parallel and Distributed Systems, IEEE Transactions 10(7) (1999), 673–693.
- Kungching Chang, Liqun Qi, and Tan Zhang, A survey on the spectral theory of nonnegative tensors, Numer. Linear Algebra Appl. 20 (2013), no. 6, 891–912. MR 3141883, DOI 10.1002/nla.1902
- Fan R. K. Chung, The Laplacian of a hypergraph, Expanding graphs (Princeton, NJ, 1992) DIMACS Ser. Discrete Math. Theoret. Comput. Sci., vol. 10, Amer. Math. Soc., Providence, RI, 1993, pp. 21–36. MR 1235565, DOI 10.1090/dimacs/010/03
- Joshua Cooper and Aaron Dutle, Spectra of uniform hypergraphs, Linear Algebra Appl. 436 (2012), no. 9, 3268–3292. MR 2900714, DOI 10.1016/j.laa.2011.11.018
- Keqin Feng and Wen-Ch’ing Winnie Li, Spectra of hypergraphs and applications, J. Number Theory 60 (1996), no. 1, 1–22. MR 1405722, DOI 10.1006/jnth.1996.0109
- Joel Friedman, The spectra of infinite hypertrees, SIAM J. Comput. 20 (1991), no. 5, 951–961. MR 1115660, DOI 10.1137/0220058
- Joel Friedman and Avi Wigderson, On the second eigenvalue of hypergraphs, Combinatorica 15 (1995), no. 1, 43–65. MR 1325271, DOI 10.1007/BF01294459
- Shenglong Hu and Liqun Qi, The Laplacian of a uniform hypergraph, J. Comb. Optim. 29 (2015), no. 2, 331–366. MR 3297926, DOI 10.1007/s10878-013-9596-x
- L. Kang, V. Nikiforov, and X. Yuan, The $p$-spectral radius of $k$-partite and $k$-chromatic uniform hypergraphs, Linear Algebra Appl. 478 (2015), 81–107. MR 3342416, DOI 10.1016/j.laa.2015.03.016
- Peter Keevash, John Lenz, and Dhruv Mubayi, Spectral extremal problems for hypergraphs, SIAM J. Discrete Math. 28 (2014), no. 4, 1838–1854. MR 3270186, DOI 10.1137/130929370
- Mike Krebs and Anthony Shaheen, Expander families and Cayley graphs, Oxford University Press, Oxford, 2011. A beginner’s guide. MR 3137611
- John Lenz and Dhruv Mubayi, Eigenvalues of non-regular linear quasirandom hypergraphs, Discrete Math. 340 (2017), no. 2, 145–153. MR 3578811, DOI 10.1016/j.disc.2016.07.024
- John Lenz and Dhruv Mubayi, Eigenvalues and linear quasirandom hypergraphs, Forum Math. Sigma 3 (2015), Paper No. e2, 26. MR 3324939, DOI 10.1017/fms.2014.22
- L.-H. Lim, Singular values and eigenvalues of tensors: a variational approach, in: Proceedings of the IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP’05), vol. 1, 2005, pp. 129–132.
- Linyuan Lu and Xing Peng, High-ordered random walks and generalized Laplacians on hypergraphs, Algorithms and models for the web graph, Lecture Notes in Comput. Sci., vol. 6732, Springer, Heidelberg, 2011, pp. 14–25. MR 2842309, DOI 10.1007/978-3-642-21286-4_{2}
- Linyuan Lu and Xing Peng, Loose Laplacian spectra of random hypergraphs, Random Structures Algorithms 41 (2012), no. 4, 521–545. MR 2993134, DOI 10.1002/rsa.20443
- María G. Martínez, Harold M. Stark, and Audrey A. Terras, Some Ramanujan hypergraphs associated to $\textrm {GL}(n,{\Bbb F}_q)$, Proc. Amer. Math. Soc. 129 (2001), no. 6, 1623–1629. MR 1814089, DOI 10.1090/S0002-9939-00-05965-7
- Bojan Mohar, A strengthening and a multipartite generalization of the Alon-Boppana-Serre theorem, Proc. Amer. Math. Soc. 138 (2010), no. 11, 3899–3909. MR 2679612, DOI 10.1090/S0002-9939-2010-10543-9
- Vladimir Nikiforov, Analytic methods for uniform hypergraphs, Linear Algebra Appl. 457 (2014), 455–535. MR 3230456, DOI 10.1016/j.laa.2014.05.005
- V. Nikiforov, Combinatorial methods for the spectral $p$-norm of hypermatrices, Linear Algebra Appl. 529 (2017), 324–354. MR 3659806, DOI 10.1016/j.laa.2017.04.023
- A. Nilli, On the second eigenvalue of a graph, Discrete Math. 91 (1991), no. 2, 207–210. MR 1124768, DOI 10.1016/0012-365X(91)90112-F
- Liqun Qi, Eigenvalues of a real supersymmetric tensor, J. Symbolic Comput. 40 (2005), no. 6, 1302–1324. MR 2178089, DOI 10.1016/j.jsc.2005.05.007
- Jia-Yu Shao, A general product of tensors with applications, Linear Algebra Appl. 439 (2013), no. 8, 2350–2366. MR 3091308, DOI 10.1016/j.laa.2013.07.010
- Jean-Pierre Serre, Répartition asymptotique des valeurs propres de l’opérateur de Hecke $T_p$, J. Amer. Math. Soc. 10 (1997), no. 1, 75–102 (French). MR 1396897, DOI 10.1090/S0894-0347-97-00220-8
Bibliographic Information
- Hong-Hai Li
- Affiliation: College of Mathematics and Information Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, People’s Republic of China
- MR Author ID: 722372
- Email: lhh@jxnu.edu.cn
- Bojan Mohar
- Affiliation: Department of Mathematics, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
- MR Author ID: 126065
- ORCID: 0000-0002-7408-6148
- Email: mohar@sfu.ca
- Received by editor(s): December 8, 2015
- Received by editor(s) in revised form: November 27, 2017, and May 22, 2018
- Published electronically: November 16, 2018
- Additional Notes: The first author was supported by National Natural Science Foundation of China (11561032, 11201198) and CSC, the Jiangxi Science Fund for Distinguished Young Scholars (No. 20171BCB23032), and the funds of the Education Department of Jiangxi Province (No. GJJ150345). The work was done while the first author was visiting Simon Fraser University.
The second author was supported in part by the NSERC Discovery Grant R611450 (Canada), by the Canada Research Chairs program, and by the Research Project J1-8130 of ARRS (Slovenia). The second author is on leave from IMFM, Department of Mathematics, University of Ljubljana. - Communicated by: Patricia Hersh
- © Copyright 2018 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 147 (2019), 933-946
- MSC (2010): Primary 15A18, 05C65
- DOI: https://doi.org/10.1090/proc/14274
- MathSciNet review: 3896044