Small prime $k$th power residues for $k=2,3,4$: A reciprocity laws approach
HTML articles powered by AMS MathViewer
- by Kübra Benli̇ and Paul Pollack
- Proc. Amer. Math. Soc. 147 (2019), 987-994
- DOI: https://doi.org/10.1090/proc/14290
- Published electronically: November 13, 2018
- PDF | Request permission
Abstract:
Nagell proved that for each prime $p\equiv 1\pmod {3}$, $p > 7$, there is a prime $q<2p^{1/2}$ that is a cubic residue modulo $p$. Here we show that for each fixed $\epsilon > 0$ and each prime $p\equiv 1\pmod {3}$ with $p > p_0(\epsilon )$, the number of prime cubic residues $q < p^{1/2+\epsilon }$ exceeds $p^{\epsilon /30}$. Our argument, like Nagell’s, is rooted in the law of cubic reciprocity; somewhat surprisingly, character sum estimates play no role. We use the same method to establish related results about prime quadratic and biquadratic residues. For example, for all large primes $p$, there are more than $p^{1/9}$ prime quadratic residues $q<p$.References
- Eric Bach and Jonathan Sorenson, Explicit bounds for primes in residue classes, Math. Comp. 65 (1996), no. 216, 1717–1735. MR 1355006, DOI 10.1090/S0025-5718-96-00763-6
- Harold G. Diamond and H. Halberstam, A higher-dimensional sieve method, Cambridge Tracts in Mathematics, vol. 177, Cambridge University Press, Cambridge, 2008. With an appendix (“Procedures for computing sieve functions”) by William F. Galway. MR 2458547, DOI 10.1017/CBO9780511542909
- P. D. T. A. Elliott, The least prime $k-\textrm {th}$-power residue, J. London Math. Soc. (2) 3 (1971), 205–210. MR 281686, DOI 10.1112/jlms/s2-3.2.205
- GH from MO (http://mathoverflow.net/users/11919/gh-from-mo), Given a prime $p$ how many primes $\ell < p$ of a given quadratic character mod $p$?, MathOverflow, http://mathoverflow.net/q/52393 (version: 2014-09-03).
- Youness Lamzouri, Xiannan Li, and Kannan Soundararajan, Conditional bounds for the least quadratic non-residue and related problems, Math. Comp. 84 (2015), no. 295, 2391–2412. MR 3356031, DOI 10.1090/S0025-5718-2015-02925-1
- Youness Lamzouri, Xiannan Li, and Kannan Soundararajan, Corrigendum to “Conditional bounds for the least quadratic non-residue and related problems” [ MR3356031], Math. Comp. 86 (2017), no. 307, 2551–2554. MR 3647972, DOI 10.1090/mcom/3261
- Franz Lemmermeyer, Reciprocity laws, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2000. From Euler to Eisenstein. MR 1761696, DOI 10.1007/978-3-662-12893-0
- Trygve Nagell, Sur les restes et les non-restes cubiques, Ark. Mat. 1 (1952), 579–586 (French). MR 49921, DOI 10.1007/BF02591364
- Paul Pollack, Not always buried deep, American Mathematical Society, Providence, RI, 2009. A second course in elementary number theory. MR 2555430, DOI 10.1090/mbk/068
- Paul Pollack, Bounds for the first several prime character nonresidues, Proc. Amer. Math. Soc. 145 (2017), no. 7, 2815–2826. MR 3637932, DOI 10.1090/proc/13432
- Zhi-Hong Sun, On the theory of cubic residues and nonresidues, Acta Arith. 84 (1998), no. 4, 291–335. MR 1618089, DOI 10.4064/aa-84-4-291-335
- Zhi-Hong Sun, Supplements to the theory of quartic residues, Acta Arith. 97 (2001), no. 4, 361–377. MR 1823552, DOI 10.4064/aa97-4-5
- A. I. Vinogradov and Ju. V. Linnik, Hypoelliptic curves and the least prime quadratic residue, Dokl. Akad. Nauk SSSR 168 (1966), 259–261 (Russian). MR 0209223
- I. M. Vinogradov, On the distribution of quadratic residues and nonresidues, J. Phys.-Mat. ob-va Permsk Univ. 2 (1919), 1–16 (Russian).
Bibliographic Information
- Kübra Benli̇
- Affiliation: Department of Mathematics, University of Georgia, Athens, Georgia 30602
- MR Author ID: 1258926
- Email: kubra.benli25@uga.edu
- Paul Pollack
- Affiliation: Department of Mathematics, University of Georgia, Athens, Georgia 30602
- MR Author ID: 830585
- Email: pollack@uga.edu
- Received by editor(s): November 13, 2017
- Received by editor(s) in revised form: June 14, 2018
- Published electronically: November 13, 2018
- Communicated by: Matthew A. Papanikolas
- © Copyright 2018 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 147 (2019), 987-994
- MSC (2010): Primary 11A15; Secondary 11N36
- DOI: https://doi.org/10.1090/proc/14290
- MathSciNet review: 3896049