$*$-exponential of slice-regular functions
HTML articles powered by AMS MathViewer
- by A. Altavilla and C. de Fabritiis
- Proc. Amer. Math. Soc. 147 (2019), 1173-1188
- DOI: https://doi.org/10.1090/proc/14307
- Published electronically: December 6, 2018
- PDF | Request permission
Abstract:
As in [Entire slice regular functions, Springer, 2016] we define the $*$-exponential of a slice-regular function, which can be seen as a generalization of the complex exponential to quaternions. Explicit formulas for $\exp _*(f)$ are provided, also in terms of suitable sine and cosine functions. We completely classify under which conditions the $*$-exponential of a function is either slice-preserving or $\mathbb {C}_J$-preserving for some $J\in \mathbb {S}$ and show that $\exp _*(f)$ is never-vanishing. Sharp necessary and sufficient conditions are given in order that $\exp _*(f+g)=\exp _*(f)*\exp _*(g)$, finding an exceptional and unexpected case in which equality holds even if $f$ and $g$ do not commute. We also discuss the existence of a square root of a slice-preserving regular function, characterizing slice-preserving functions (defined on the circularization of simply connected domains) which admit square roots. Square roots of this kind of function are used to provide a further formula for $\exp _{*}(f)$. A number of examples are given throughout the paper.References
- Amedeo Altavilla, On the real differential of a slice regular function, Adv. Geom. 18 (2018), no. 1, 5–26. MR 3750250, DOI 10.1515/advgeom-2017-0044
- Fabrizio Colombo, Graziano Gentili, Irene Sabadini, and Daniele Struppa, Extension results for slice regular functions of a quaternionic variable, Adv. Math. 222 (2009), no. 5, 1793–1808. MR 2555912, DOI 10.1016/j.aim.2009.06.015
- Fabrizio Colombo, J. Oscar González-Cervantes, and Irene Sabadini, The C-property for slice regular functions and applications to the Bergman space, Complex Var. Elliptic Equ. 58 (2013), no. 10, 1355–1372. MR 3170704, DOI 10.1080/17476933.2012.674521
- Fabrizio Colombo, Irene Sabadini, and Daniele C. Struppa, Noncommutative functional calculus, Progress in Mathematics, vol. 289, Birkhäuser/Springer Basel AG, Basel, 2011. Theory and applications of slice hyperholomorphic functions. MR 2752913, DOI 10.1007/978-3-0348-0110-2
- Fabrizio Colombo, Irene Sabadini, and Daniele C. Struppa, Entire slice regular functions, SpringerBriefs in Mathematics, Springer, Cham, 2016. MR 3585395, DOI 10.1007/978-3-319-49265-0
- S. G. Gal and I. Sabadini, Approximation by polynomials on quaternionic compact sets, Math. Methods Appl. Sci. 38 (2015), no. 14, 3063–3074. MR 3382692, DOI 10.1002/mma.3281
- Graziano Gentili and Caterina Stoppato, Zeros of regular functions and polynomials of a quaternionic variable, Michigan Math. J. 56 (2008), no. 3, 655–667. MR 2490652, DOI 10.1307/mmj/1231770366
- Graziano Gentili, Caterina Stoppato, and Daniele C. Struppa, Regular functions of a quaternionic variable, Springer Monographs in Mathematics, Springer, Heidelberg, 2013. MR 3013643, DOI 10.1007/978-3-642-33871-7
- Riccardo Ghiloni, Valter Moretti, and Alessandro Perotti, Continuous slice functional calculus in quaternionic Hilbert spaces, Rev. Math. Phys. 25 (2013), no. 4, 1350006, 83. MR 3062919, DOI 10.1142/S0129055X13500062
- R. Ghiloni and A. Perotti, Slice regular functions on real alternative algebras, Adv. Math. 226 (2011), no. 2, 1662–1691. MR 2737796, DOI 10.1016/j.aim.2010.08.015
- Riccardo Ghiloni and Vincenzo Recupero, Slice regular semigroups, Trans. Amer. Math. Soc. 370 (2018), no. 7, 4993–5032. MR 3787379, DOI 10.1090/tran/7354
- Guangbin Ren and Xieping Wang, Slice regular composition operators, Complex Var. Elliptic Equ. 61 (2016), no. 5, 682–711. MR 3482788, DOI 10.1080/17476933.2015.1113270
- Fabio Vlacci, Regular composition for slice-regular functions of quaternionic variable, Advances in hypercomplex analysis, Springer INdAM Ser., vol. 1, Springer, Milan, 2013, pp. 141–147. MR 3014614, DOI 10.1007/978-88-470-2445-8_{9}
Bibliographic Information
- A. Altavilla
- Affiliation: Dipartimento Di Matematica, Università di Roma “Tor Vergata”, Via Della Ricerca Scientifica 1, 00133, Roma, Italy
- MR Author ID: 1092326
- Email: altavilla@mat.uniroma2.it
- C. de Fabritiis
- Affiliation: Dipartimento di Ingegneria Industriale e Scienze Matematiche, Università Politecnica delle Marche, Via Brecce Bianche, 60131, Ancona, Italy
- MR Author ID: 294935
- Email: fabritiis@dipmat.univpm.it
- Received by editor(s): February 6, 2018
- Received by editor(s) in revised form: June 14, 2018, and June 22, 2018
- Published electronically: December 6, 2018
- Additional Notes: The first author was supported by FIRB 2012 Geometria differenziale e teoria geometrica delle funzioni, SIR grant “NEWHOLITE - New methods in holomorphic iteration” n. RBSI14CFME and SIR grant AnHyC - Analytic aspects in complex and hypercomplex geometry n. RBSI14DYEB
Both authors were supported by GNSAGA of INdAM - Communicated by: Filippo Bracci
- © Copyright 2018 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 147 (2019), 1173-1188
- MSC (2010): Primary 30G35; Secondary 30C15, 32A30, 47A60
- DOI: https://doi.org/10.1090/proc/14307
- MathSciNet review: 3896065