Rellich inequalities for sub-Laplacians with drift
HTML articles powered by AMS MathViewer
- by Michael Ruzhansky and Nurgissa Yessirkegenov
- Proc. Amer. Math. Soc. 147 (2019), 1335-1349
- DOI: https://doi.org/10.1090/proc/14312
- Published electronically: December 6, 2018
- PDF | Request permission
Abstract:
In this note we prove horizontal weighted Rellich inequalities for the sub-Laplacian and for sub-Laplacians with drift on general stratified groups. We show how the presence of a drift improves the known inequalities. Moreover, we obtain several versions of weighted Rellich inequalities for the sub-Laplacian with drift on the polarizable Carnot groups, also with the weights associated with the fundamental solution of the sub-Laplacian. The obtained results are already new for the Laplacian in the usual Euclidean setting of ${\mathbb R}^n$, embedding the classical Rellich inequality into a family of Rellich inequalities with parameter dependent drifts.References
- Adimurthi, Massimo Grossi, and Sanjiban Santra, Optimal Hardy-Rellich inequalities, maximum principle and related eigenvalue problem, J. Funct. Anal. 240 (2006), no. 1, 36–83. MR 2259892, DOI 10.1016/j.jfa.2006.07.011
- G. Barbatis, Best constants for higher-order Rellich inequalities in $L^p(\Omega )$, Math. Z. 255 (2007), no. 4, 877–896. MR 2274540, DOI 10.1007/s00209-006-0056-5
- Alexander A. Balinsky, W. Desmond Evans, and Roger T. Lewis, The analysis and geometry of Hardy’s inequality, Universitext, Springer, Cham, 2015. MR 3408787, DOI 10.1007/978-3-319-22870-9
- Zoltán M. Balogh and Jeremy T. Tyson, Polar coordinates in Carnot groups, Math. Z. 241 (2002), no. 4, 697–730. MR 1942237, DOI 10.1007/s00209-002-0441-7
- G. Barbatis and A. Tertikas, On a class of Rellich inequalities, J. Comput. Appl. Math. 194 (2006), no. 1, 156–172. MR 2230976, DOI 10.1016/j.cam.2005.06.020
- E. B. Davies and A. M. Hinz, Explicit constants for Rellich inequalities in $L_p(\Omega )$, Math. Z. 227 (1998), no. 3, 511–523. MR 1612685, DOI 10.1007/PL00004389
- D. E. Edmunds and W. D. Evans, The Rellich inequality, Rev. Mat. Complut. 29 (2016), no. 3, 511–530. MR 3538645, DOI 10.1007/s13163-016-0200-7
- G. B. Folland, Subelliptic estimates and function spaces on nilpotent Lie groups, Ark. Mat. 13 (1975), no. 2, 161–207. MR 494315, DOI 10.1007/BF02386204
- Veronique Fischer and Michael Ruzhansky, Quantization on nilpotent Lie groups, Progress in Mathematics, vol. 314, Birkhäuser/Springer, [Cham], 2016. MR 3469687, DOI 10.1007/978-3-319-29558-9
- G. B. Folland and Elias M. Stein, Hardy spaces on homogeneous groups, Mathematical Notes, vol. 28, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1982. MR 657581
- Jerome A. Goldstein, Ismail Kombe, and Abdullah Yener, A general approach to weighted Rellich type inequalities on Carnot groups, Monatsh. Math. 186 (2018), no. 1, 49–72. MR 3788226, DOI 10.1007/s00605-017-1060-z
- Waldemar Hebisch, Giancarlo Mauceri, and Stefano Meda, Holomorphy of spectral multipliers of the Ornstein-Uhlenbeck operator, J. Funct. Anal. 210 (2004), no. 1, 101–124. MR 2052115, DOI 10.1016/j.jfa.2003.08.010
- Waldemar Hebisch, Giancarlo Mauceri, and Stefano Meda, Spectral multipliers for sub-Laplacians with drift on Lie groups, Math. Z. 251 (2005), no. 4, 899–927. MR 2190149, DOI 10.1007/s00209-005-0839-0
- Yongyang Jin and Shoufeng Shen, Weighted Hardy and Rellich inequality on Carnot groups, Arch. Math. (Basel) 96 (2011), no. 3, 263–271. MR 2784910, DOI 10.1007/s00013-011-0220-y
- I. Kombe, Hardy, Rellich and Uncertainty principle inequalities on Carnot Groups, arXiv:math/0611850, (2006).
- Ismail Kombe, Sharp weighted Rellich and uncertainty principle inequalities on Carnot groups, Commun. Appl. Anal. 14 (2010), no. 2, 251–271. MR 2667055
- Baosheng Lian, Some sharp Rellich type inequalities on nilpotent groups and application, Acta Math. Sci. Ser. B (Engl. Ed.) 33 (2013), no. 1, 59–74. MR 3003743, DOI 10.1016/S0252-9602(12)60194-5
- A. Martini, A. Ottazzi, and M. Vallarino, A multiplier theorem for sub-Laplacians with drift on Lie groups, arXiv:1705.04752, (2017).
- Franz Rellich, Halbbeschränkte Differentialoperatoren höherer Ordnung, Proceedings of the International Congress of Mathematicians, 1954, Amsterdam, vol. III, Erven P. Noordhoff N. V., Groningen; North-Holland Publishing Co., Amsterdam, 1956, pp. 243–250 (German). MR 0088624
- Michael Ruzhansky and Durvudkhan Suragan, On horizontal Hardy, Rellich, Caffarelli-Kohn-Nirenberg and $p$-sub-Laplacian inequalities on stratified groups, J. Differential Equations 262 (2017), no. 3, 1799–1821. MR 3582213, DOI 10.1016/j.jde.2016.10.028
- Michael Ruzhansky and Durvudkhan Suragan, Layer potentials, Kac’s problem, and refined Hardy inequality on homogeneous Carnot groups, Adv. Math. 308 (2017), 483–528. MR 3600064, DOI 10.1016/j.aim.2016.12.013
- Michael Ruzhansky and Durvudkhan Suragan, Local Hardy and Rellich inequalities for sums of squares of vector fields, Adv. Differential Equations 22 (2017), no. 7-8, 505–540. MR 3646469
- Michael Ruzhansky and Durvudkhan Suragan, Hardy and Rellich inequalities, identities, and sharp remainders on homogeneous groups, Adv. Math. 317 (2017), 799–822. MR 3682685, DOI 10.1016/j.aim.2017.07.020
- Michael Ruzhansky, Durvudkhan Suragan, and Nurgissa Yessirkegenov, Sobolev type inequalities, Euler-Hilbert-Sobolev and Sobolev-Lorentz-Zygmund spaces on homogeneous groups, Integral Equations Operator Theory 90 (2018), no. 1, Paper No. 10, 33. MR 3769720, DOI 10.1007/s00020-018-2437-7
- Bolys Sabitbek and Durvudkhan Suragan, Horizontal weighted Hardy-Rellich type inequalities on stratified Lie groups, Complex Anal. Oper. Theory 12 (2018), no. 6, 1469–1480. MR 3829602, DOI 10.1007/s11785-017-0650-z
- A. Tertikas and N. B. Zographopoulos, Best constants in the Hardy-Rellich inequalities and related improvements, Adv. Math. 209 (2007), no. 2, 407–459. MR 2296305, DOI 10.1016/j.aim.2006.05.011
- Qiaohua Yang, Best constants in the Hardy-Rellich type inequalities on the Heisenberg group, J. Math. Anal. Appl. 342 (2008), no. 1, 423–431. MR 2440809, DOI 10.1016/j.jmaa.2007.12.014
- Yongyang Jin and Yazhou Han, Weighted Rellich inequality on H-type groups and nonisotropic Heisenberg groups, J. Inequal. Appl. , posted on (2010), Art. ID 158281, 17. MR 2671023, DOI 10.1155/2010/158281
Bibliographic Information
- Michael Ruzhansky
- Affiliation: Department of Mathematics, Imperial College London, 180 Queen’s Gate, London SW7 2AZ, United Kingdom
- Address at time of publication: Department of Mathematics, Ghent University, Belgium; and School of Mathematical Sciences, Queen Mary University of London, United Kingdom
- MR Author ID: 611131
- Email: m.ruzhansky@imperial.ac.uk
- Nurgissa Yessirkegenov
- Affiliation: Institute of Mathematics and Mathematical Modelling, 125 Pushkin str., 050010 Almaty, Kazakhstan – and – Department of Mathematics, Imperial College London, 180 Queen’s Gate, London SW7 2AZ, United Kingdom
- MR Author ID: 1079693
- Email: n.yessirkegenov15@imperial.ac.uk
- Received by editor(s): September 15, 2017
- Received by editor(s) in revised form: July 2, 2018
- Published electronically: December 6, 2018
- Additional Notes: The first author was supported in part by the EPSRC Grants EP/K039407/1 and EP/R003025/1, and by the Leverhulme Research Grant RPG-2017-151.
The second author was supported by the MESRK grant AP05133271. No new data was collected or generated during the course of research. - Communicated by: Michael Hitrik
- © Copyright 2018 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 147 (2019), 1335-1349
- MSC (2010): Primary 22E30, 43A80
- DOI: https://doi.org/10.1090/proc/14312
- MathSciNet review: 3896078