Universal abstract elementary classes and locally multipresentable categories
HTML articles powered by AMS MathViewer
- by Michael Lieberman, Jiří Rosický and Sebastien Vasey
- Proc. Amer. Math. Soc. 147 (2019), 1283-1298
- DOI: https://doi.org/10.1090/proc/14326
- Published electronically: December 6, 2018
- PDF | Request permission
Abstract:
We exhibit an equivalence between the model-theoretic framework of universal classes and the category-theoretic framework of locally multipresentable categories. We similarly give an equivalence between abstract elementary classes (AECs) admitting intersections and locally polypresentable categories. We use these results to shed light on Shelah’s presentation theorem for AECs.References
- Jiří Adámek, Horst Herrlich, and George E. Strecker, Abstract and concrete categories, online edition, 2004, available from http://katmat.math.uni-bremen.de/acc/.
- Jiří Adámek and Jiří Rosický, Locally presentable and accessible categories, London Mathematical Society Lecture Note Series, vol. 189, Cambridge University Press, Cambridge, 1994. MR 1294136, DOI 10.1017/CBO9780511600579
- Will Boney, Rami Grossberg, Michael Lieberman, Jiří Rosický, and Sebastien Vasey, $\mu$-abstract elementary classes and other generalizations, J. Pure Appl. Algebra 220 (2016), no. 9, 3048–3066. MR 3486290, DOI 10.1016/j.jpaa.2016.02.002
- Will Boney, A presentation theorem for continuous logic and metric abstract elementary classes, MLQ Math. Log. Q. 63 (2017), no. 5, 397–414. MR 3748483
- T. Beke and J. Rosický, Abstract elementary classes and accessible categories, Ann. Pure Appl. Logic 163 (2012), no. 12, 2008–2017. MR 2964883, DOI 10.1016/j.apal.2012.06.003
- John T. Baldwin and Saharon Shelah, Examples of non-locality, J. Symbolic Logic 73 (2008), no. 3, 765–782. MR 2444267, DOI 10.2178/jsl/1230396746
- Thierry Coquand, Categories of embeddings, Theoret. Comput. Sci. 68 (1989), no. 3, 221–237. MR 1031958, DOI 10.1016/0304-3975(89)90161-8
- Yves Diers, Catégories localement multiprésentables, Arch. Math. (Basel) 34 (1980), no. 4, 344–356 (French). MR 593951, DOI 10.1007/BF01224971
- Peter Gabriel and Friedrich Ulmer, Lokal präsentierbare Kategorien, Lecture Notes in Mathematics, Vol. 221, Springer-Verlag, Berlin-New York, 1971 (German). MR 0327863
- Michel Hébert, Syntactic characterizations of closure under pullbacks and of locally polypresentable categories, Ann. Pure Appl. Logic 84 (1997), no. 1, 73–95. Fifth Asian Logic Conference (Singapore, 1993). MR 1440464, DOI 10.1016/S0168-0072(96)00044-9
- Åsa Hirvonen and Tapani Hyttinen, Categoricity in homogeneous complete metric spaces, Arch. Math. Logic 48 (2009), no. 3-4, 269–322. MR 2500987, DOI 10.1007/s00153-009-0120-z
- Tapani Hyttinen and Kaisa Kangas, Categoricity and universal classes, preprint, 2018, https://arxiv.org/abs/1712.08532v2.
- P. T. Johnstone, A syntactic approach to Diers’ localizable categories, Applications of sheaves (Proc. Res. Sympos. Appl. Sheaf Theory to Logic, Algebra and Anal., Univ. Durham, Durham, 1977) Lecture Notes in Math., vol. 753, Springer, Berlin, 1979, pp. 466–478. MR 555555
- Alexei Kolesnikov and Chris Lambie-Hanson, The Hanf number for amalgamation of coloring classes, J. Symb. Log. 81 (2016), no. 2, 570–583. MR 3519446, DOI 10.1017/jsl.2015.48
- C. Lair, Catégories modelables et catégories esquissables, Diagrammes 6 (1981), L1–L20 (French). MR 684535
- Francois Lamarche, Modelling polymorphism with categories, ProQuest LLC, Ann Arbor, MI, 1989. Thesis (Ph.D.)–McGill University (Canada). MR 2637300
- Michael J. Lieberman, Category-theoretic aspects of abstract elementary classes, Ann. Pure Appl. Logic 162 (2011), no. 11, 903–915. MR 2817563, DOI 10.1016/j.apal.2011.05.002
- M. Lieberman and J. Rosický, Classification theory for accessible categories, J. Symb. Log. 81 (2016), no. 1, 151–165. MR 3471133, DOI 10.1017/jsl.2014.85
- Michael Makkai and Robert Paré, Accessible categories: the foundations of categorical model theory, Contemporary Mathematics, vol. 104, American Mathematical Society, Providence, RI, 1989. MR 1031717, DOI 10.1090/conm/104
- Michael O. Rabin, Classes of models and sets of sentences with the intersection property, Ann. Fac. Sci. Univ. Clermont-Ferrand 7 (1962), 39–53. MR 284325
- Jiří Rosický, Categories of models of languages ${L}_{\kappa , \lambda }$, Abstracts of the 9th winter school on abstract analysis, Mathematics Institute Prague, 1981, pp. 153–157.
- Jiří Rosický, Representace konkrétních kategorií, 1983, Doctoral thesis, University of Brno.
- Saharon Shelah, Classification of nonelementary classes. II. Abstract elementary classes, Classification theory (Chicago, IL, 1985) Lecture Notes in Math., vol. 1292, Springer, Berlin, 1987, pp. 419–497. MR 1033034, DOI 10.1007/BFb0082243
- John T. Baldwin, Classification theory: 1985, Classification theory (Chicago, IL, 1985) Lecture Notes in Math., vol. 1292, Springer, Berlin, 1987, pp. 1–23. MR 1033020, DOI 10.1007/BFb0082229
- Saharon Shelah, Classification theory for elementary abstract classes, Studies in Logic (London), vol. 18, College Publications, London, 2009. [Title on cover: Classification theory for abstract elementary classes]; Mathematical Logic and Foundations. MR 2643267
- Saharon Shelah and Alexander Usvyatsov, Model theoretic stability and categoricity for complete metric spaces, Israel J. Math. 182 (2011), 157–198. MR 2783970, DOI 10.1007/s11856-011-0028-2
- Alfred Tarski, Contributions to the theory of models. I, Nederl. Akad. Wetensch. Proc. Ser. A 57 (1954), 572–581 = Indagationes Math. 16, 572–581 (1954). MR 0066301
- Sebastien Vasey, Infinitary stability theory, Arch. Math. Logic 55 (2016), no. 3-4, 567–592. MR 3490921, DOI 10.1007/s00153-016-0481-z
- Sebastien Vasey, Shelah’s eventual categoricity conjecture in universal classes: Part I, Ann. Pure Appl. Logic 168 (2017), no. 9, 1609–1642. MR 3659405, DOI 10.1016/j.apal.2017.03.003
- Sebastien Vasey, Shelah’s eventual categoricity conjecture in universal classes: part II, Selecta Math. (N.S.) 23 (2017), no. 2, 1469–1506. MR 3624917, DOI 10.1007/s00029-016-0296-0
Bibliographic Information
- Michael Lieberman
- Affiliation: Department of Mathematics and Statistics, Faculty of Science, Masaryk University, Brno, Czech Republic
- MR Author ID: 938223
- Email: lieberman@math.muni.cz
- Jiří Rosický
- Affiliation: Department of Mathematics and Statistics, Faculty of Science, Masaryk University, Brno, Czech Republic
- MR Author ID: 150710
- Email: rosicky@math.muni.cz
- Sebastien Vasey
- Affiliation: Department of Mathematics, Harvard University, Cambridge, Massachusetts 02138
- MR Author ID: 1152952
- Email: sebv@math.harvard.edu
- Received by editor(s): August 16, 2017
- Received by editor(s) in revised form: April 18, 2018, and July 12, 2018
- Published electronically: December 6, 2018
- Additional Notes: The first and second authors were supported by the Grant Agency of the Czech Republic under the grant P201/12/G028.
- Communicated by: Heike Mildenberger
- © Copyright 2018 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 147 (2019), 1283-1298
- MSC (2010): Primary 03C48; Secondary 18C35, 03C52, 03C55, 03C75
- DOI: https://doi.org/10.1090/proc/14326
- MathSciNet review: 3896074