## Spherical conic metrics and realizability of branched covers

HTML articles powered by AMS MathViewer

- by Xuwen Zhu
- Proc. Amer. Math. Soc.
**147**(2019), 1805-1815 - DOI: https://doi.org/10.1090/proc/14318
- Published electronically: December 6, 2018
- PDF | Request permission

## Abstract:

Branched covers between Riemann surfaces are associated with certain combinatorial data, and the Hurwitz existence problem asks whether given data, satisfying those combinatorial constraints can be realized by some branched cover. We connect recent developments in spherical conic metrics to this old problem and give a new method of finding exceptional (unrealizable) branching data. As an application, we find new infinite sets of exceptional branched cover data on the Riemann sphere.## References

- Krzysztof Barański,
*On realizability of branched coverings of the sphere*, Topology Appl.**116**(2001), no. 3, 279–291. MR**1857667**, DOI 10.1016/S0166-8641(00)00094-8 - Subhadip Dey,
*Spherical metrics with conical singularities on 2-spheres*, Geom. Dedicata**196**(2018), 53–61. MR**3853628**, DOI 10.1007/s10711-017-0306-1 - Allan L. Edmonds, Ravi S. Kulkarni, and Robert E. Stong,
*Realizability of branched coverings of surfaces*, Trans. Amer. Math. Soc.**282**(1984), no. 2, 773–790. MR**732119**, DOI 10.1090/S0002-9947-1984-0732119-5 - Alexandre Eremenko,
*Co-axial monodromy*, arXiv: 1706.04608v1, 2017. - S. M. Gersten,
*On branched covers of the $2$-sphere by the $2$-sphere*, Proc. Amer. Math. Soc.**101**(1987), no. 4, 761–766. MR**911047**, DOI 10.1090/S0002-9939-1987-0911047-4 - A. Hurwitz,
*Ueber Riemann’sche Flächen mit gegebenen Verzweigungspunkten*, Math. Ann.**39**(1891), no. 1, 1–60 (German). MR**1510692**, DOI 10.1007/BF01199469 - Dale H. Husemoller,
*Ramified coverings of Riemann surfaces*, Duke Math. J.**29**(1962), 167–174. MR**136726** - Michael Kapovich,
*Branched covers between spheres and polygonal inequalities in simplicial trees*, https://math.ucdavis.edu/~kapovich/EPR/covers.pdf, 2017. - A. G. Khovanskii and Smilka Zdravkovska,
*Branched covers of $S^2$ and braid groups*, J. Knot Theory Ramifications**5**(1996), no. 1, 55–75. MR**1373810**, DOI 10.1142/S0218216596000059 - Rafe Mazzeo and Hartmut Weiss,
*Teichmüller theory for conic surfaces*, Geometry, analysis and probability, Progr. Math., vol. 310, Birkhäuser/Springer, Cham, 2017, pp. 127–164. MR**3821926**, DOI 10.1007/978-3-319-49638-2_{7} - Rafe Mazzeo and Xuwen Zhu,
*Conical metrics on Riemann surfaces, I: the compactified configuration space and regularity*, arXiv:1710.09781, 2017. - Rafe Mazzeo and Xuwen Zhu,
*Conical metrics on Riemann surfaces, II: the moduli space*, In preparation. - A. D. Mednykh,
*Nonequivalent coverings of Riemann surfaces with a prescribed ramification type*, Sibirsk. Mat. Zh.**25**(1984), no. 4, 120–142 (Russian). MR**754748** - A. D. Mednykh,
*Branched coverings of Riemann surfaces whose branch orders coincide with the multiplicity*, Comm. Algebra**18**(1990), no. 5, 1517–1533. MR**1059745**, DOI 10.1080/00927879008823980 - Gabriele Mondello and Dmitri Panov,
*Spherical metrics with conical singularities on a 2-sphere: angle constraints*, Int. Math. Res. Not. IMRN**16**(2016), 4937–4995. MR**3556430**, DOI 10.1093/imrn/rnv300 - Stefano Monni, Jun S. Song, and Yun S. Song,
*The Hurwitz enumeration problem of branched covers and Hodge integrals*, J. Geom. Phys.**50**(2004), no. 1-4, 223–256. MR**2078227**, DOI 10.1016/j.geomphys.2003.11.003 - Raghavan Narasimhan,
*Compact Riemann surfaces*, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 1992. MR**1172116**, DOI 10.1007/978-3-0348-8617-8 - A. Okounkov and R. Pandharipande,
*Gromov-Witten theory, Hurwitz theory, and completed cycles*, Ann. of Math. (2)**163**(2006), no. 2, 517–560. MR**2199225**, DOI 10.4007/annals.2006.163.517 - F. Pakovich,
*Solution of the Hurwitz problem for Laurent polynomials*, J. Knot Theory Ramifications**18**(2009), no. 2, 271–302. MR**2507927**, DOI 10.1142/S0218216509006896 - Maria Antonietta Pascali and Carlo Petronio,
*Surface branched covers and geometric 2-orbifolds*, Trans. Amer. Math. Soc.**361**(2009), no. 11, 5885–5920. MR**2529918**, DOI 10.1090/S0002-9947-09-04779-5 - Ekaterina Pervova and Carlo Petronio,
*On the existence of branched coverings between surfaces with prescribed branch data. I*, Algebr. Geom. Topol.**6**(2006), 1957–1985. MR**2263056**, DOI 10.2140/agt.2006.6.1957 - Ekaterina Pervova and Carlo Petronio,
*Realizability and exceptionality of candidate surface branched covers: methods and results*, Geometry Seminars. 2005–2009 (Italian), Univ. Stud. Bologna, Bologna, 2010, pp. 105–120. MR**2655758** - Ekaterina Pervova and Carlo Petronio,
*On the existence of branched coverings between surfaces with prescribed branch data. II*, J. Knot Theory Ramifications**17**(2008), no. 7, 787–816. MR**2436584**, DOI 10.1142/S0218216508006397 - Jijian Song and Bin Xu,
*On rational functions with more than three branch points*, arXiv:1510.06291, 2015. - Marc Troyanov,
*Prescribing curvature on compact surfaces with conical singularities*, Trans. Amer. Math. Soc.**324**(1991), no. 2, 793–821. MR**1005085**, DOI 10.1090/S0002-9947-1991-1005085-9 - Marc Troyanov,
*Metrics of constant curvature on a sphere with two conical singularities*, Differential geometry (Peñíscola, 1988) Lecture Notes in Math., vol. 1410, Springer, Berlin, 1989, pp. 296–306. MR**1034288**, DOI 10.1007/BFb0086431 - Hao Zheng,
*Realizability of branched coverings of $S^2$*, Topology Appl.**153**(2006), no. 12, 2124–2134. MR**2239076**, DOI 10.1016/j.topol.2005.08.007

## Bibliographic Information

**Xuwen Zhu**- Affiliation: Department of Mathematics, University of California, Berkeley, California 94720
- MR Author ID: 1220465
- Received by editor(s): June 4, 2018
- Received by editor(s) in revised form: July 14, 2018
- Published electronically: December 6, 2018
- Communicated by: Guofang Wei
- © Copyright 2018 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**147**(2019), 1805-1815 - MSC (2010): Primary 57M12; Secondary 53C20
- DOI: https://doi.org/10.1090/proc/14318
- MathSciNet review: 3910445