AN INTEGRAL FORMULA FOR THE Q'-PRIME CURVATURE IN 3-DIMENSIONAL CR GEOMETRY

JEFFREY S. CASE, JIH-HSIN CHENG, AND PAUL YANG

ABSTRACT. We give an integral formula for the total Q'-curvature of a three-dimensional CR manifold with positive CR Yamabe constant and nonnegative Paneitz operator. Our derivation includes a relationship between the Green’s functions of the CR Laplacian and the P'-operator.

1. Introduction

The Q'-curvature, introduced to three-dimensional CR manifolds by the first- and third-named authors [2] and to higher-dimensional CR manifolds by Hirachi [9], has recently emerged as the natural CR counterpart to Branson’s Q-curvature in conformal geometry. The analogies are especially strong in dimension three, where it is known that the total Q'-curvature is a biholomorphic invariant — indeed, it is a multiple of the Burns–Epstein invariant [2, 3] — and gives rise to a CR invariant characterization of the standard CR three-sphere.

The above discussion is complicated by the fact that the Q'-curvature is most naturally defined only for pseudo-Einstein contact forms. A pseudohermitian manifold (M^3, J, θ) is pseudo-Einstein if the curvature R and torsion A_{11} of the Tanaka–Webster connection satisfy $R_1 = iA_{11,\bar{1}}$. It is known [8] that if θ is a pseudo-Einstein contact form, then $\hat{\theta} := e^\Upsilon \theta$ is pseudo-Einstein if and only if Υ is a CR pluriharmonic function. Moreover, if M^3 is embedded in \mathbb{C}^2, then pseudo-Einstein contact forms arise from solutions of Fefferman’s Monge–Ampère equation [5]. For a pseudo-Einstein manifold (M^3, J, θ), the Q'-curvature is defined by

$$Q' := -2\Delta_b R + R^2 - 4|A_{11}|^2.$$

The behavior of Q' under the conformal transformation of θ to $\hat{\theta}$ is controlled by the P'-prime operator P' and the Paneitz operator P, which have the local expressions

$$P'(u) := 4\Delta^2_b u - 8 \text{Im}(A_{11}u_{\bar{1}})_{,\bar{1}} - 4 \text{Re}(Ru_{1})_{,\bar{1}},$$

$$P(u) := \Delta^2_b u + T^2 u - 4 \text{Im}(A_{11}u_{1})_{,\bar{1}}.$$

More precisely, if $\hat{\theta} = e^\Upsilon \theta$ and θ are both pseudo-Einstein, then

$$e^{2\Upsilon} Q' = Q' + P'(\Upsilon) + \frac{1}{2} P(\Upsilon^2).$$

This is a pre-publication version of this article, which may differ from the final published version. Copyright restrictions may apply.
From this formula, it is clear that the total Q'-curvature is independent of the choice of pseudo-Einstein contact form. A direct computation also shows that if the holomorphic tangent bundle of M is trivial, then the total Q'-curvature is a multiple of the Burns–Epstein invariant [3].

The CR Yamabe constant of a CR manifold (M^3, J) is the infimum of the total (Tanaka–Webster) scalar curvature over all contact forms of volume one. For CR manifolds (M^3, J) with positive CR Yamabe constant and nonnegative Paneitz operator, the first- and third-named authors [2] showed that $\int Q' \leq 16\pi^2$ with equality if and only if (M^3, J) is CR equivalent to the standard CR three-sphere. The main goal of this note is to refine this statement by giving an integral formula for the total Q'-curvature in terms of the Green’s function of the CR Laplacian:

Theorem 1. Let (M^3, J, θ) be a pseudo-Einstein manifold with positive CR Yamabe constant and nonnegative Paneitz operator. Assume also that (M^3, J, θ) is embedded in \mathbb{C}^2. Given any $p \in M$, it holds that

$$\int_M Q' = 16\pi^2 - 4 \int_M G^4_L |\hat{A}_{11}|^2 - 12 \int_M \log(G_L) P_4 \log(G_L)$$

where G_L is the Green’s function for the CR Laplacian with pole p and $\hat{\theta} = G^2_L \theta$. In particular,

$$\int_M Q' \leq 16\pi^2$$

with equality if and only if (M^3, J) is CR equivalent to the standard CR three sphere.

Theorem 1 is motivated by similar work in conformal geometry: Gursky [6] used the total Q-curvature to characterize the standard four-sphere among all Riemannian manifolds with positive Yamabe constant and Hang–Yang [7] rederived this result by giving an integral formula for the total Q-curvature in terms of the Green’s function for the conformal Laplacian.

The key technical difficulty in the proof of Theorem 1 comes from the potential need to consider the Q'-curvature of a contact form which is not pseudo-Einstein. On the one hand, $\log G_L$ need not be CR pluri-harmonic, and hence $G^2_L \theta$ need not be pseudo-Einstein; this problem is overcome by adapting ideas from [2]. On the other hand, estimates for $\log G_L$ are usually derived in CR normal coordinates (cf. [10]), but CR normal coordinates need not be specified in terms of a pseudo-Einstein contact form. We overcome the latter issue by using Moser’s contact form, which is necessarily pseudo-Einstein, as a replacement for CR normal coordinates.

Ignoring these technical difficulties, the idea of the proof of Theorem 1 is to observe that $\hat{\theta} := G^2_L \theta$ has vanishing scalar curvature away from the pole, and hence \hat{Q}' has a particularly simple expression. Equation (1) relates Q' and \hat{Q}' in terms of $P'(|\log G_L|)$ and $P'(|(\log G_L)|^2)$.

This is a pre-publication version of this article, which may differ from the final published version. Copyright restrictions may apply.
Using normal coordinates, we can compute these latter functions near the pole \(p \), at which point (2) follows from (1) by integration. As an upshot of this approach, we relate \(\log G_L \) and the Green’s function for \(P' \); we expect this relation to be useful for future studies of the \(Q' \)-curvature.

This note is organized as follows: In Section 2, we recall necessary facts about Moser’s contact form and use it to relate \(Q' \) and \(\hat{Q}' \). In Section 3, we integrate this relation to prove Theorem 1.

Acknowledgments. The authors would like to thank Kengo Hirachi for helpful discussions about the Fefferman defining function and the Lee–Melrose asymptotic expansion. JSC was supported by a grant from the Simons Foundation (Grant No. 524601). JHC would like to thank the Ministry of Science and Technology of Taiwan, R.O.C. for the support of the project: MOST 106-2115-M-001-013- and the National Center for Theoretical Sciences for the constant support. PY was supported by NSF grant DMS-1509505.

2. Moser’s contact form and normal coordinates

Moser’s normal form for a real hypersurface in \(\mathbb{C}^2 \) (see, e.g., [4]) reads

\[
v = |z|^2 - E(u, z, \bar{z})
\]

where \((z, w) \in C^2, w = u + iv, \) and

\[
E(u, z, \bar{z}) = -c_{42}(u)z^4\bar{z}^2 - c_{24}(u)z^2\bar{z}^4 - c_{33}(u)z^3\bar{z}^3 + O(7).
\]

Hereafter we use \(O(k) \) to denote \(O(\rho^k) \) where \(\rho := (|z|^4 + u^2)^{1/4} \).

Associated to the defining function

\[
r = \frac{1}{2i}(w - \bar{w}) - |z|^2 + E(u, z, \bar{z}),
\]

we have Moser’s contact form

\[
\theta = i\partial r = \frac{1}{2} dw - i\bar{z}dz + i(E\bar{z}dz + E_u\frac{1}{2}dw)
\]

in which we have used \(E_w = E_u\frac{1}{2} \) and \(E_z := \partial E/\partial z, E_u := \partial E/\partial u, \) etc..

We call coordinates \((z, u)\) for real hypersurface \(\{r = 0\} \) Moser’s normal coordinates. We are going to compute pseudohermitian quantities with respect to Moser’s contact form in Moser’s normal coordinates. Compute

\[
d\theta = ig_{1\bar{1}}dz \wedge d\bar{z} + \theta \wedge \phi
\]

where

\[
\begin{align*}
g_{1\bar{1}} & = 1 - Ez\bar{z} - \lambda E_u\bar{z} - \bar{\lambda}E_uz - |\lambda|^2E_uu, \\
\phi & = a_1dz + a_{\bar{1}}d\bar{z}
\end{align*}
\]
in which
\begin{align*}
\lambda &= \frac{\bar{z} - E_z}{-i + E_u} = i\bar{z} - iE_z + \bar{z}E_u + O(6) \\
a_1 &= \frac{-E_{uz} - \lambda E_{uu}}{i + E_u}, \ a_{\bar{1}} = (a_1).
\end{align*}

The order counting follows the rule that z, \bar{z} are of order 1 and u is of order 2. Here we have also used the relation between dw and θ:

$$dw = \frac{2}{1 + iE_u}(\theta + i(\bar{z} - E_z)dz).$$

Take a pseudohermitian coframe
\begin{align*}
\theta^1 &:= dz - i\bar{a}^1\theta, \\
a^1 &:= g^{1\bar{1}}a_{\bar{1}},
\end{align*}

where $g^{1\bar{1}} := (g_{1\bar{1}})^{-1}$, such that

$$d\theta = ig_{1\bar{1}}\theta^1 \land \theta^{\bar{1}}.$$

The dual frame Z_1 (such that $\theta(Z_1) = 0$, $\theta^1(Z_1) = 1$, and $\theta^{\bar{1}}(Z_1) = 0$) reads

$$Z_1 = \frac{\partial}{\partial z} + \lambda \frac{\partial}{\partial u} = \dot{Z}_1 + O(5) \frac{\partial}{\partial u}$$

where $\dot{Z}_1 := \partial_z + i\bar{z}\partial_u$.

Differentiating θ^1 from (6) gives

$$d\theta^1 = \theta^1 \land \dot{\omega}_1^1 + iZ_1(a^1)\theta \land \theta^{\bar{1}}$$

by (7), where

$$\dot{\omega}_1^1 = a_1\theta^{\bar{1}} - iZ_1(a^1)\theta.$$

Differentiating (7) yields

$$\left(dg_{1\bar{1}} - g_{1\bar{1}}\dot{\omega}_1^1 - g_{\bar{1}\bar{1}}\dot{\omega}_1^{\bar{1}}\right) \land \theta^1 \land \theta^1 = 0,$$

where $\dot{\omega}_1^1$ is the complex conjugate of $\dot{\omega}_1^{\bar{1}}$. Therefore

$$dg_{1\bar{1}} - g_{1\bar{1}}\dot{\omega}_1^1 - g_{\bar{1}\bar{1}}\dot{\omega}_1^{\bar{1}} = [Z_1g_{1\bar{1}} - g_{1\bar{1}}a_1]\theta^1 + \text{conjugate}.$$

It follows that the pseudohermitian connection form ω_1^1 reads

$$\omega_1^1 = \dot{\omega}_1^1 + (g^{1\bar{1}}Z_1g_{1\bar{1}} - a_1)\theta^1.$$

We also conclude from (9) that

$$A_1^1 = iZ_1(a^1).$$

Substituting (11) into the structure equation $d\omega_1^1 = Rg_{1\bar{1}}\theta^1 \land \theta^{\bar{1}}$ mod θ, we obtain the Tanaka-Webster (scalar) curvature

$$R = \frac{1}{4}(Z_1a_1 + Z_1a^1 + Z^1a_1 - Z^1Z_1g_{1\bar{1}} + a^1(Z_1g_{1\bar{1}}) - a^1a_1).$$

This is a pre-publication version of this article, which may differ from the final published version. Copyright restrictions may apply.
where we have used g^{11} to raise the indices, e.g., $Z^1 := g^{11} Z_1 = (g^{11} Z_1)$, $a^1 := g^{11} a_1$. We then compute the lowest order terms of $Z^1 a_1$, $Z^1 g_{11}$ as follows:

$$
Z^1 a_1 = - E_{uu} - i E_{u\bar{z}} - z E_{uz} + \bar{z} E_{u\bar{z}} - i |z|^2 E_{uuu} + O(3),
$$

$$
Z^1 g_{11} = - E_{z\bar{z}} - 2i z E_{z\bar{z}u} + iz E_{z\bar{z}z} + z^2 E_{uuu} + i E_{uz}
- 2 |z|^2 E_{u\bar{z}u} - \bar{z} E_{u\bar{z}} - i \bar{z} |z|^2 E_{uuu} + O(4).
$$

Here we have counted z, \bar{z} of order 1, u of order 2, and used $g^{11} = 1 + O(4)$, $\lambda = i \bar{z} - i E_{z} + \bar{z} E_{u} + h.o.t., a_1 = i E_{uz} - \bar{z} E_{u\bar{z}} + h.o.t.$, $Z_1 = \partial_z + i \bar{z} \partial_u + h.o.t.$ From (12) we compute

$$
A_1^1 = E_{u\bar{z}z} - 2iz E_{u\bar{z}u} + z^2 E_{uuu} + O(3).
$$

By (14) and alike formulas, we can compute R through (13):

$$
R = -2 E_{uu} + E_{z\bar{z}z} - 2i z E_{z\bar{z}u} + 2i \bar{z} E_{z\bar{z}u}
+ 4 |z|^2 E_{u\bar{z}u} - z^2 E_{u\bar{z}z} - \bar{z}^2 E_{uuu} + 2iz |z|^2 E_{uuu}
- 2iz |z|^2 E_{uuu} + |z|^4 E_{uuu} + O(3).
$$

We can then compute $R_{1} = Z_1 R$, $A_{1,1}^1$, and obtain the pseudo-Einstein tensor as follows:

$$
R_{1} - i A_{1,1}^1 = E_{z\bar{z}z} - 4i z E_{ uu} + 3iz E_{z\bar{z}u}
-3iz E_{z\bar{z}u} - 2iz E_{z\bar{z}z} + 6 |z|^2 E_{z\bar{z}uu}
-3z^2 E_{u\bar{z}z} + 6iz E_{u\bar{z}u} + 6i z |z|^2 E_{z\bar{z}uu}
-3z E_{u\bar{z}z} - z^2 E_{u\bar{z}u} - 3iz |z|^2 E_{uuu}
-iz^3 E_{uuu} + iz^2 E_{uuu} - 2iz |z|^2 E_{uuu}
-6iz z^2 E_{ uuu} + 3 |z|^4 E_{uuu} + iz |z|^2 E_{uuu}
+iz |z|^4 E_{uuu} + O(2).
$$

From (17) along the u-curve (a chain) where $z = 0$, we conclude that $R_{1} - i A_{1,1}^1 = 0$ (terms in $O(2)$ all vanish because of the special structure of Moser’s normal form) and does not vanish identically in general. The reason is that the coefficient of z in $E_{z\bar{z}z} z$ is $c_{42}(u)$ which is proportional to the Cartan tensor.

In general a pseudo-Einstein contact form may not be a “normalized” contact form that gives CR normal coordinates. So we take the contact form associated to the solution ψ to the complex Monge–Ampère equation:

$$
J[\psi] := \det \begin{pmatrix}
\psi & \psi_{\bar{z}} & \psi_{\bar{w}} \\
\psi_{z} & \psi_{zz} & \psi_{z\bar{w}} \\
\psi_{w} & \psi_{w\bar{z}} & \psi_{ww}
\end{pmatrix} = 1
$$

in Ω and $\psi = 0$ on $\partial \Omega$. The contact form $\theta := i \partial \bar{\psi}$ is pseudo-Einstein. We want to compute Δ_b, P, P w.r.t. this θ, but in Moser’s normal
coordinates \((z, u)\). For \(r\) having a form of (3) multiplied by \(4^{1/3}\), we have

\[
J[r] = 1 + O(\rho^4).
\]

Lee-Melrose’s asymptotic expansion [12] reads

\[
\psi \sim r \sum_{k \geq 0} \eta_k (r^3 \log r)^k \text{ near } \partial \Omega = \{r = 0\} \subset C^2
\]

with \(\eta_k \in C^\infty(\bar{\Omega})\). This means that for large \(N\), \(\psi - r \sum_{k=0}^N \eta_k (r^3 \log r)^k\) has many continuous derivatives on \(\bar{\Omega}\) and vanishes to high order at \(\partial \Omega\). It follows from (18), (19), and (20) that

\[
J[r \eta_0] = 1 + O(\rho^4) \quad \text{and} \quad \eta_0 = 1 + O(\rho^4).
\]

So we have

\[
\psi \sim r \eta_0 + \eta_1 r^4 \log r + h.o.t.
\]

\[
\sim r + O(\rho^6).
\]

Similar argument as for \(r\) before works for \(\psi\). Therefore, with respect to the pseudo-Einstein contact form defined by \(\psi\), we still have

\[
\theta = (1 + O(\rho^4)) \hat{\theta} + O(\rho^5) dz + O(\rho^5) d\bar{z},
\]

\[
\theta^1 = O(\rho^3) \hat{\theta} + (1 + O(\rho^8)) dz + O(\rho^8) d\bar{z},
\]

\[
Z_1 = \hat{Z}_1 + O(\rho^5) \frac{\partial}{\partial u},
\]

\[
\omega_1^1 = O(\rho^2) \hat{\omega} + O(\rho^3) dz + O(\rho^7) d\bar{z},
\]

\[
A_1^1 = O(\rho^2), \quad R = O(\rho^2),
\]

\[
g_{11} = 1 + O(\rho^4), \quad g^{11} = 1 + O(\rho^4)
\]

in view of (5), (8), (10), (11), (15), (16), and (4). Now let \(L\) denote the CR Laplacian:

\[
L := -4 \triangle_b + R
\]

where \(\triangle_b\) is the (positive) sublaplacian given by

\[
\triangle_b = Z^1 Z_1 - \omega_1^1 (Z^1)Z_1 + \text{conjugate}.
\]

Let \(G_L\) denote the Green’s function of \(L\) with pole at \(p\); i.e.,

\[
L G_L = -4 \triangle_b G_L + R G_L = 16 \delta_p.
\]

Let \(\hat{P}' := 4 \hat{\triangle}_b^2\), \(\hat{L} := -4 \hat{\triangle}_b\) denote the \(P'\) operator, the CR Laplacian for the Heisenberg group \(\mathbb{H}^1\), respectively. Observe that (cf. [1])

\[
\hat{P}'(\log G_L) = \hat{P}'(\log \frac{1}{2\pi \rho^2}) = 8\pi^2 S_p
\]

with \(S_p := S(p, \cdot)\), where \(S(p, \cdot)\) is the kernel of the orthogonal projection \(\pi: L^2(\mathbb{H}^1) \to \mathcal{P}(\mathbb{H}^1)\) onto the space of CR pluriharmonic functions.
where we have used \(G_L = \frac{1}{2\pi \rho^2} \). From (21) and (22) we obtain

\[
\Delta_b = (1 + O(\rho^4)) \Delta_b + O(\rho^{10}) \frac{\partial^2}{\partial u^2} + O(\rho^4) \frac{\partial}{\partial u} \\
+ O(\rho^5) \frac{\partial}{\partial u} \circ \hat{Z}_1 + O(\rho^7) \hat{Z}_1 \\
+ O(\rho^5) \frac{\partial}{\partial u} \circ \hat{Z}_1 + O(\rho^7) \hat{Z}_1.
\]

From (21) and (22) we obtain

\[
\Delta_b = \frac{1}{2\pi \rho^2} \pi^2 + \omega.
\]

Write \(L \omega = a \) bounded function near \(p \).

Therefore from subelliptic regularity theory of \(L \), we see that \(\omega \) is in the Folland–Stein space \(S^{2,q} \) for any \(q > 1 \), and hence \(w \in C^{1,\gamma} \). In fact, \(\omega \) is \(C^\infty \) smooth \([10]\). Recall that

\[
P' = 4 \Delta_b - 8 \Im \nabla^1(A_1 \nabla_1) - 4 \Re \nabla^1(R \nabla_1)
\]

\[
= \hat{P}' + 4(\Delta_b^2 - \hat{\Delta}_b^2) \\
- 8 \Im \nabla^1(A_1 \nabla_1) - 4 \Re \nabla^1(R \nabla_1).
\]

Write

\[
\log G_L = \log \left(\frac{1}{2\pi \rho^2} + \omega \right)
\]

\[
= \log \left(\frac{1}{2\pi \rho^2} \right) + \log(1 + 2\pi \rho^2 \omega).
\]

We can now compute

\[
P'(\log G_L) = \hat{P}'(\log \left(\frac{1}{2\pi \rho^2} \right)) + (P' - \hat{P}') \log(\frac{1}{2\pi \rho^2})
\]

\[
+ P'(1 + 2\pi \rho^2 \omega)
\]

\[
= 8\pi^2 S_p + \{4(\Delta_b^2 - \hat{\Delta}_b^2) - 8 \Im \nabla^1(A_1 \nabla_1)
\]

\[
- 4 \Re \nabla^1(R \nabla_1)\} \log(\frac{1}{2\pi \rho^2})
\]

\[
+ P'(1 + 2\pi \rho^2 \omega).
\]

Since \(\omega \) is \(C^\infty \) smooth, the third term is a bounded function near \(p \).

The second term is also bounded near \(p \) in view of (21) and (24). So we conclude that

\[
P'(\log G_L) = 8\pi^2 S_p + a \text{ bounded function}.
\]

Similarly we can show

\[
P'((\log G_L)^2) = 8\pi^2 (\delta_p - S_p) + a \text{ bounded function}.
\]
On the other hand, we reduce computing the most singular term in $P_3(\log G_L)$ to computing $P_3(\log(\frac{1}{2\pi\rho^2}))$ by (26). In view of (21) we find that the most singular term in $P_3(\log(\frac{1}{2\pi\rho^2}))$ is a constant multiple of $\hat{P}_3(\log \rho)$ where $\hat{P}_3 = \hat{Z}_1\hat{Z}_1\hat{Z}_1$ is the P_3-operator w.r.t. the Heisenberg group H_1. Observe that $|z|^2 - iu$ is a CR function on H_1, i.e.,

$$\hat{Z}_1(|z|^2 - iu) = (\partial_z - iz\partial_u)(|z|^2 - iu) = 0.$$

It follows that the real part of $\log(|z|^2 - iu)$ is CR pluriharmonic. By [11] we have

$$\hat{P}_3 ((\log ||z|^2 - iu|) = \hat{Z}_1\hat{Z}_1\hat{Z}_1 (\log ||z|^2 - iu|) = 0.$$

Since $\log ||z|^2 - iu| = 2\log \rho$, we conclude that

$$\hat{P}_3(\log \rho) = 0.$$

It follows that

(29) $P_3(\log G_L) = \hat{P}_3(\log(\frac{1}{2\pi\rho^2}))$

$$+ (P_3 - \hat{P}_3)(\log(\frac{1}{2\pi\rho^2})) + P_3(\log(1 + 2\pi\rho^2\omega))$$

$$= (P_3 - \hat{P}_3)(\log(\frac{1}{2\pi\rho^2})) + P_3(\log(1 + 2\pi\rho^2\omega))$$

$$= O(\rho).$$

by (21). It follows that $(\log G_L)P(\log G_L) = O(\log \rho)$ near the pole p. Hence it is integrable with respect to the volume $\theta \wedge d\theta$ which has vanishing order ρ^3 near p.

3. A FORMULA FOR THE INTEGRAL OF Q' CURVATURE

Let θ be a pseudo-Einstein contact form on (M^3, J). By [2, Proposition 6.1], for any $\Upsilon \in C^\infty(M)$, it holds that $\hat{\Upsilon} := e^\Upsilon \theta$ satisfies

(30) $e^{2\Upsilon} \hat{Q}' = Q' + P'(\Upsilon) + \frac{1}{2}P(\Upsilon^2)$

$$- \Upsilon P(\Upsilon) - 16 \text{Re}(\nabla^1 \Upsilon)(P_3 \Upsilon)_1$$

where P_3 is the operator characterizing CR pluriharmonics. Recall that $P(\Upsilon) = 4\nabla^1(P_3 \Upsilon)_1$.

Let G_L be the Green’s function of the CR Laplacian (we assume $Y(J) > 0$). Set $\hat{\theta} = G_L^2 \theta$. Then $\hat{\theta}$ has vanishing scalar curvature away from the pole p. In particular, we have

$$\hat{Q}' = -4|\hat{A}_{11}|_p^2$$

This is a pre-publication version of this article, which may differ from the final published version. Copyright restrictions may apply.
away from the pole \(p \). Plugging this into (30), we see that away from \(p \),

\[
-4G^4_L|\hat{A}_{11}|^2_\bar{\theta} = Q' + 2P'(\log G_L) \\
+ 2P((\log G_L)^2) - 4(\log G_L)P(\log G_L) \\
- 64 \text{Re}(\nabla^1 \log G_L)(P_3(\log G_L))_1.
\]

Now assume \((M^3, J)\) is embedded in \(\mathbb{C}^2 \). Take \(\theta \) to be the pseudo-Einstein contact form associated to the solution to complex Monge–Ampère equation (18). We look at the order of

\[
-4G^4_L|\hat{A}_{11}|^2_\bar{\theta}
\]

near \(p \). The transformation law of torsion reads

\[
\hat{A}_{11} = G^{-2}_L(A_{11} + 2i(\log G_L),_{11} - 4i(\log G_L),_1(\log G_L),_1
\]

(see [11, p. 421]). Recall \(\check{Z}_1 := \partial_z + i\bar{z}\partial_u \). Observe that

\[
\hat{Z}_1 \log \rho^4 = \frac{2\bar{z}}{|z|^2 - iu}, \\
\check{Z}_1 \hat{Z}_1 \log \rho^4 = \frac{-4\bar{z}^2}{(|z|^2 - iu)^2} = -(\check{Z}_1 \log \rho^4)^2.
\]

Therefore we have

\[
\hat{Z}_1 \hat{Z}_1 \log \frac{1}{2\pi \rho^2} - 2(\hat{Z}_1 \log \frac{1}{2\pi \rho^2})^2 = 0
\]

It follows from (21) and (33) that

\[
A_{11} = O(\rho^2) \\
2i(\log G_L),_{11} - 4i(\log G_L),_1(\log G_L),_1 = O(\rho^2)
\]

near \(p \). So from (32) and (34), we learn that

\[
G^4_L|\hat{A}_{11}|^2_\bar{\theta} = O(\rho^4)
\]

near \(p \). By (29), we obtain that the last two terms in (31) are \(L^1 \) and bounded near \(p \), respectively. In view of (27), (28), (35), and (31), we then have

\[
2P'(\log G_L) + 2P((\log G_L)^2) \\
= 16\pi^2 \delta_p - Q' - 4G^4_L|\hat{A}_{11}|^2_\bar{\theta} \\
+ 4(\log G_L)P(\log G_L) + 64 \text{Re}(\nabla^1 \log G_L)(P_3(\log G_L))_1.
\]

in the distribution sense. Integrating the last term in (36) gives

\[
-16 \int (\log G_L)P(\log G_L) + 64 \text{Re} \int_{\text{around } p} (\log G_L)P_3(\log G_L)i\theta \wedge \theta^1.
\]

Here we have omitted the lower index “1” for the \(P_3 \) term. The boundary term in (37) vanishes by (29) and that \(\theta \wedge \theta^1 \) has vanishing order
of ρ^3 near p. Applying (36) to the constant function 1 yields

$$0 = 16\pi^2 - \int Q' - 4\int G^4_L |\hat{A}_{11}|^2_{\hat{\theta}} - 12\int (\log G_L)P(\log G_L)$$

by (37). Here notice that, since $P'(1) = 0$, it holds that

$$P'(\log G_L)(1) := \int (\log G_L)P'(1) = 0;$$

i.e. $P'(\log G_L)$ annihilates constants as a distribution. Similarly, since $P(1) = 0$, we obtain that $2P((\log G_L)^2)(1) = 0$. Therefore

$$\int Q' = 16\pi^2 - 4\int G^4_L |\hat{A}_{11}|^2_{\hat{\theta}} - 12\int (\log G_L)P(\log G_L).$$

(38) Since $P \geq 0$ and $(\log G_L)P(\log G_L)$ is integrable (cf. (29)), we conclude that

$$\int Q' \leq 16\pi^2.$$ (39)

Moreover, since the total Q'-curvature is independent of the choice of pseudo-Einstein contact form [2], both (38) and (39) inequality hold for any pseudo-Einstein contact form on M.

Finally, equality holds in (39) if and only if $\hat{A}_{11} \equiv 0$ and $\log G_L$ is pluriharmonic. Since also $\hat{R} \equiv 0$, we conclude that $(M \setminus \{p\}, \hat{\theta})$ is isometric to the Heisenberg group \mathbb{H}^3. Indeed, the developing map identifies the universal cover of $M \setminus \{p\}$ with \mathbb{H}^3, while the fact that a neighborhood of p (equivalently, a neighborhood of infinity in $(M \setminus \{p\}, \hat{\theta})$) is simply connected implies that the covering map is trivial. By adding back the point p, we conclude that (M, J) is CR equivalent to the standard CR three-sphere.

REFERENCES

DEPARTMENT OF MATHEMATICS, PENNSYLVANIA STATE UNIVERSITY, UNIVERSITY PARK, PA 16802, U.S.A.
E-mail address: jqc5026@psu.edu

INSTITUTE OF MATHEMATICS, ACADEMIA SINICA, TAIPEI AND NATIONAL CENTER FOR THEORETICAL SCIENCES, TAIPEI OFFICE, TAIWAN, R.O.C.
E-mail address: cheng@math.sinica.edu.tw

DEPARTMENT OF MATHEMATICS, PRINCETON UNIVERSITY, PRINCETON, NJ 08544, U.S.A.
E-mail address: yang@Math.Princeton.EDU