## Symplectic resolutions for Higgs moduli spaces

HTML articles powered by AMS MathViewer

- by Andrea Tirelli
- Proc. Amer. Math. Soc.
**147**(2019), 1399-1412 - DOI: https://doi.org/10.1090/proc/14339
- Published electronically: December 12, 2018
- PDF | Request permission

## Abstract:

In this paper, we study the algebraic symplectic geometry of the singular moduli spaces of Higgs bundles of degree $0$ and rank $n$ on a compact Riemann surface $X$ of genus $g$. In particular, we prove that such moduli spaces are symplectic singularities, in the sense of Beauville [Invent. Math. 139 (2000), 541–549], and admit a projective symplectic resolution if and only if $g=1$ or $(g, n)=(2,2)$. These results are an application of a recent paper by Bellamy and Schedler [ArXiv e-print (2016)] via the so-called Isosingularity Theorem.## References

- M. Artin,
*Algebraic approximation of structures over complete local rings*, Inst. Hautes Études Sci. Publ. Math.**36**(1969), 23–58. MR**268188** - Arnaud Beauville,
*Symplectic singularities*, Invent. Math.**139**(2000), no. 3, 541–549. MR**1738060**, DOI 10.1007/s002229900043 - G. Bellamy and T. Schedler,
*Symplectic resolutions of Quiver varieties and character varieties*, ArXiv e-prints (2016). - Gwyn Bellamy,
*On singular Calogero-Moser spaces*, Bull. Lond. Math. Soc.**41**(2009), no. 2, 315–326. MR**2496507**, DOI 10.1112/blms/bdp019 - Gwyn Bellamy and Travis Schedler,
*On the (non)existence of symplectic resolutions of linear quotients*, Math. Res. Lett.**23**(2016), no. 6, 1537–1564. MR**3621098**, DOI 10.4310/MRL.2016.v23.n6.a1 - Gwyn Bellamy and Travis Schedler,
*A new linear quotient of $\textbf {C}^4$ admitting a symplectic resolution*, Math. Z.**273**(2013), no. 3-4, 753–769. MR**3030675**, DOI 10.1007/s00209-012-1028-6 - Tom Braden, Anthony Licata, Nicholas Proudfoot, and Ben Webster,
*Quantizations of conical symplectic resolutions II: category $\mathcal O$ and symplectic duality*, Astérisque**384**(2016), 75–179 (English, with English and French summaries). with an appendix by I. Losev. MR**3594665** - Tom Braden, Nicholas Proudfoot, and Ben Webster,
*Quantizations of conical symplectic resolutions I: local and global structure*, Astérisque**384**(2016), 1–73 (English, with English and French summaries). MR**3594664** - Kevin Corlette,
*Flat $G$-bundles with canonical metrics*, J. Differential Geom.**28**(1988), no. 3, 361–382. MR**965220** - William Crawley-Boevey and Peter Shaw,
*Multiplicative preprojective algebras, middle convolution and the Deligne-Simpson problem*, Adv. Math.**201**(2006), no. 1, 180–208. MR**2204754**, DOI 10.1016/j.aim.2005.02.003 - Ron Donagi, Lawrence Ein, and Robert Lazarsfeld,
*Nilpotent cones and sheaves on $K3$ surfaces*, Birational algebraic geometry (Baltimore, MD, 1996) Contemp. Math., vol. 207, Amer. Math. Soc., Providence, RI, 1997, pp. 51–61. MR**1462924**, DOI 10.1090/conm/207/02719 - S. K. Donaldson,
*Twisted harmonic maps and the self-duality equations*, Proc. London Math. Soc. (3)**55**(1987), no. 1, 127–131. MR**887285**, DOI 10.1112/plms/s3-55.1.127 - R. Fedorov, A. Soibelman, and Y. Soibelman,
*Motivic classes of moduli of Higgs bundles and moduli of bundles with connections*, ArXiv e-prints (2017). - Emilio Franco, Oscar Garcia-Prada, and P. E. Newstead,
*Higgs bundles over elliptic curves*, Illinois J. Math.**58**(2014), no. 1, 43–96. MR**3331841** - Emilio Franco and Andrea Tirelli,
*O’Grady’s examples of IHS manifolds and Higgs moduli spaces*. In preparation. - Baohua Fu,
*A survey on symplectic singularities and symplectic resolutions*, Ann. Math. Blaise Pascal**13**(2006), no. 2, 209–236. MR**2275448** - Alberto García-Raboso and Steven Rayan,
*Introduction to nonabelian Hodge theory: flat connections, Higgs bundles and complex variations of Hodge structure*, Calabi-Yau varieties: arithmetic, geometry and physics, Fields Inst. Monogr., vol. 34, Fields Inst. Res. Math. Sci., Toronto, ON, 2015, pp. 131–171. MR**3409775**, DOI 10.1007/978-1-4939-2830-9_{5} - Michael Groechenig,
*Hilbert schemes as moduli of Higgs bundles and local systems*, Int. Math. Res. Not. IMRN**23**(2014), 6523–6575. MR**3286347**, DOI 10.1093/imrn/rnt167 - Tamás Hausel, Emmanuel Letellier, and Fernando Rodriguez-Villegas,
*Arithmetic harmonic analysis on character and quiver varieties II*, Adv. Math.**234**(2013), 85–128. MR**3003926**, DOI 10.1016/j.aim.2012.10.009 - N. J. Hitchin,
*The self-duality equations on a Riemann surface*, Proc. London Math. Soc. (3)**55**(1987), no. 1, 59–126. MR**887284**, DOI 10.1112/plms/s3-55.1.59 - D. Kaledin, M. Lehn, and Ch. Sorger,
*Singular symplectic moduli spaces*, Invent. Math.**164**(2006), no. 3, 591–614. MR**2221132**, DOI 10.1007/s00222-005-0484-6 - Young-Hoon Kiem and Sang-Bum Yoo,
*The stringy $E$-function of the moduli space of Higgs bundles with trivial determinant*, Math. Nachr.**281**(2008), no. 6, 817–838. MR**2418849**, DOI 10.1002/mana.200610643 - D. Mumford, J. Fogarty, and F. Kirwan,
*Geometric invariant theory*, Ergebnisse der Mathematik und ihrer Grenzgebiete. 2. Folge, Springer Berlin Heidelberg, 2002. - Yoshinori Namikawa,
*Extension of 2-forms and symplectic varieties*, J. Reine Angew. Math.**539**(2001), 123–147. MR**1863856**, DOI 10.1515/crll.2001.070 - Yoshinori Namikawa,
*A note on symplectic singularities*, ArXiv Mathematics e-prints (2001). - Nitin Nitsure,
*Moduli space of semistable pairs on a curve*, Proc. London Math. Soc. (3)**62**(1991), no. 2, 275–300. MR**1085642**, DOI 10.1112/plms/s3-62.2.275 - Kieran G. O’Grady,
*Desingularized moduli spaces of sheaves on a $K3$*, J. Reine Angew. Math.**512**(1999), 49–117. MR**1703077**, DOI 10.1515/crll.1999.056 - Kieran G. O’Grady,
*A new six-dimensional irreducible symplectic variety*, J. Algebraic Geom.**12**(2003), no. 3, 435–505. MR**1966024**, DOI 10.1090/S1056-3911-03-00323-0 - Travis Schedler and Andrea Tirelli,
*On symplectic resolutions of multiplicative quiver varieties*. - C. S. Seshadri,
*Desingularisation of the moduli varieties of vector bundles on curves*, Proceedings of the International Symposium on Algebraic Geometry (Kyoto Univ., Kyoto, 1977) Kinokuniya Book Store, Tokyo, 1978, pp. 155–184. MR**578858** - Carlos T. Simpson,
*Higgs bundles and local systems*, Inst. Hautes Études Sci. Publ. Math.**75**(1992), 5–95. MR**1179076** - Carlos T. Simpson,
*Moduli of representations of the fundamental group of a smooth projective variety i*, Publications Mathématiques de l’IHÉS**79**(1994), 47–129 (eng). - Carlos T. Simpson,
*Moduli of representations of the fundamental group of a smooth projective variety ii*, Publications Mathématiques de l’IHÉS**80**(1994), 5–79 (eng). - Joseph L. Taylor,
*Several complex variables with connections to algebraic geometry and Lie groups*, Graduate Studies in Mathematics, vol. 46, American Mathematical Society, Providence, RI, 2002. MR**1900941**, DOI 10.1090/gsm/046 - R. O. Wells Jr.,
*Differential analysis on complex manifolds*, 2nd ed., Graduate Texts in Mathematics, vol. 65, Springer-Verlag, New York-Berlin, 1980. MR**608414**

## Bibliographic Information

**Andrea Tirelli**- Affiliation: Department of Mathematics, Imperial College, London, 180 Queen’s Gate, London SW7 2AZ, United Kingdom
- Email: a.tirelli15@imperial.ac.uk
- Received by editor(s): February 16, 2017
- Received by editor(s) in revised form: July 19, 2018
- Published electronically: December 12, 2018
- Additional Notes: This work was supported by the Engineering and Physical Sciences Research Council [EP/L015234/1], The EPSRC Centre for Doctoral Training in Geometry and Number Theory (The London School of Geometry and Number Theory), Imperial College London, and University College London.
- Communicated by: Michael Wolf
- © Copyright 2018 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**147**(2019), 1399-1412 - MSC (2010): Primary 14B05, 14D20
- DOI: https://doi.org/10.1090/proc/14339
- MathSciNet review: 3910407