Wen-Chi Kuo, David F. Rodda, Bruce A. Watson

Strong sequential completeness of the natural domain of a conditional expectation operator in Riesz spaces

Proceedings of the American Mathematical Society

DOI: 10.1090/proc/14341

Accepted Manuscript

This is a preliminary PDF of the author-produced manuscript that has been peer-reviewed and accepted for publication. It has not been copyedited, proofread, or finalized by AMS Production staff. Once the accepted manuscript has been copyedited, proofread, and finalized by AMS Production staff, the article will be published in electronic form as a “Recently Published Article” before being placed in an issue. That electronically published article will become the Version of Record.

This preliminary version is available to AMS members prior to publication of the Version of Record, and in limited cases it is also made accessible to everyone one year after the publication date of the Version of Record.

The Version of Record is accessible to everyone five years after publication in an issue.
Strong sequential completeness of the natural domain of a conditional expectation operator in Riesz spaces

Wen-Chi Kuo† David F. Rodda‡ & Bruce A. Watson §
School of Mathematics
University of the Witwatersrand
Private Bag 3, P O WITS 2050, South Africa
July 26, 2018

Abstract

Strong convergence and convergence in probability were generalized to the setting of a Riesz space with conditional expectation operator, T, in [Y. Azouzi, W.-C. Kuo, K. Ramdane, B. A. Watson, Convergence in Riesz spaces with conditional expectation operators, Positivity, 19 (2015), 647-657] as T-strong convergence and convergence in T-conditional probability, respectively. Generalized L^p spaces for the cases of $p = 1, 2, \infty$, were discussed in the setting of Riesz spaces as $L^p(T)$ spaces in [C. C. A. Labuschagne, B. A. Watson, Discrete stochastic integration in Riesz spaces, Positivity, 14 (2010), 859-875]. An $R(T)$ valued norm, for the cases of $p = 1, \infty$, was introduced on these spaces in [W. Kuo, M. Rogans, B.A. Watson, Mixing processes in Riesz spaces, Journal of Mathematical Analysis and Application, 456 (2017), 992-1004] where it was also shown that $R(T)$ is a universally complete f-algebra and that these spaces are $R(T)$-modules. In [Y. Azouzi, M. Trabelsi, L^p-spaces with respect to conditional expectation on Riesz spaces, Journal of Mathematical Analysis and Application, 447 (2017), 798-816] functional calculus was used to consider $L^p(T)$ for $p \in (1, \infty)$. In this paper we prove the strong sequential completeness of the space $L^1(T)$, the natural domain of the conditional expectation operator T, and the strong completeness of $L^\infty(T)$.

Keywords: Strong completeness; Riesz spaces; conditional expectation operators. Mathematics subject classification (2010): 46B40; 60F15; 60F25.

†Supported in part by National Research Foundation of South Africa grant number CSUR160503163733.
‡Supported in part by National Research Foundation of South Africa grant number 110943.
§Supported in part by the Centre for Applicable Analysis and Number Theory and by National Research Foundation of South Africa grant IFR170214222646 with grant no. 109289.
1 Introduction

Strong convergence and convergence in probability were generalized to Dedekind complete Riesz spaces with a conditional expectation operator in [2] as T-strong convergence and T-conditional convergence in conditional probability, respectively. Generalized L^p spaces for $p = 1, 2, \infty$ were discussed in the setting of Riesz spaces as $L^p(T)$ spaces in [9]. An $R(T)$ valued norm, for the cases of $p = 1, \infty$, was introduced on the $L^p(T)$ spaces in [8] where it was also shown that $R(T)$ is a universally complete f-algebra and that these spaces are $R(T)$-modules. More recently, in [3], the $L^p(T)$, for $p \in (1, \infty)$, spaces were considered. We also refer the reader to [13] for an interesting study of sequential order convergence in vector lattices using convergence structures and filters, and to [4] for the well known proof of the strong sequential completeness of $L^1(\Omega, \mathcal{F}, \mu)$.

In this paper we prove the strong sequential completeness of the natural domain, $L^1(T)$, of the Riesz space conditional expectation operator T, i.e. that each strong Cauchy sequence in $L^1(T)$ converges strongly in $L^1(T)$. The term strong here means with respect to the vector valued norm induced by the conditional expectation operator T in the given space. These results can be extended to the convergence of strong Cauchy nets which contain a sequence as a subnet. We conclude by showing the strong completeness of $L^\infty(T)$, i.e. that every strong Cauchy net in $L^\infty(T)$ is strongly convergent.

Interest in the completeness studied in this paper came at least in part from [6]. There the Riesz space $L^1(T)$ is endowed with a locally solid, locally convex linear topology where, for every positive order continuous linear functional φ on $L^1(T)$, a semi-norm p_φ, is defined as $p_\varphi(f) := \varphi(T|f|)$. Under the condition that $L^1(T)$ is a perfect Riesz space, in [6] it was proved $L^1(T)$, endowed with the topology generated by these semi-norms, is complete. The results of the current work supply a partial answer to whether one can avoid duality theory and the assumption of the Riesz space being perfect to obtain that $L^1(T)$ is complete with suitable definitions of completeness and convergence.

The issue of completeness of $L^1(T)$ is important in the theory of stochastic integrals in Riesz spaces, since these integrals are defined to be limits of Cauchy nets in $L^1(T)$. The results also impact on the study of martingales in Riesz spaces, see [11, 12].

We thank the referees for their advice and interest in this work.

2 Preliminaries

For general background on Riesz spaces and order convergence we refer the reader to [1, 10, 14].
A conditional expectation operator, T, on a Dedekind complete Riesz space, E, with weak order unit, say e, is a positive order continuous projection which maps weak order units to weak order units and has $R(T)$ a Dedekind complete Riesz subspace of E, see [7]. In addition we assume in this paper that T is strictly positive, in that if $v \in E_+$ with $v \neq 0$ then $Tv \neq 0$ ($Tv \geq 0$ as T is positive). This last condition is required for both the construction of the T-universal completion of E, i.e. the natural domain, $L^1(T)$, of T and so that the mapping $f \mapsto T|f|$ defines an $R(T)$ valued norm on $L^1(T)$.

The Riesz space $L^1(T)$ is defined to be the T-universal completion of E or natural domain of T, see [5] and [7]. We recall that T has a unique extension to $L^1(T)$ as a conditional expectation operator. In particular $L^1(T)$ is characterized by the property that if (x_α) is an upward directed net in $L^1(T)$ with (Tx_α) bounded in E^∞ (the universal completion), then (Tx_α) is order convergent in $L^1(T)$.

We recall from [8] that in $L^1(T)$, $R(T)$ is a universally complete f-algebra and that $L^1(T)$ is an $R(T)$-module. It thus makes sense, as was done in [8], to define an $R(T)$-valued norm on $L^1(T)$ by $\|f\|_{T,1} := T|f|$. This norm takes its values in $R(T)^+$, is homogeneous with respect to multiplication by elements of $R(T)^+$, is strictly positive and obeys the triangle inequality. For more details on this norm we refer the reader to [8]. Convergence with respect to this norm was called T-strongly convergence in [2] where various of its properties were studied in relation to other modes of convergence.

The other space that will be of interest in this work is

$$L^\infty(T) := \{ f \in L^1(T) : |f| \leq g \text{ for some } g \in R(T) \}$$

with $R(T)$-valued norm

$$\|f\|_{T,\infty} := \inf\{ g \in R(T) : |f| \leq g \}.$$

We refer the reader to [8] for more details and for the readers convenience we give an abbreviated version of the example presented there.

Example: Let $(\Omega, \mathcal{A}, \mu)$ be a measure space, which to be interesting should have $\mu(\Omega) = \infty$ and suppose that there is $(\Omega_n)_{n \in \mathbb{N}}$ be an \mathcal{A}-measurable partition of Ω into sets of finite positive measure. Let Σ be the sub-σ-algebra of \mathcal{A} generated by $(\Omega_n)_{n \in \mathbb{N}}$. We take as the starting Riesz space $E = L^\infty(\Omega, \mathcal{A}, \mu)$ and the conditional expectation operator $T = \mathbb{E}[\cdot | \Sigma]$.

For $f \in E$ we have

$$Tf(\omega) = \frac{\int_{\Omega_n} f \, d\mu}{\mu(\Omega_n)}, \quad \text{for } \omega \in \Omega_n. \quad (2.1)$$

The universal completion, E^∞, of E is the space of equivalence classes of \mathcal{A}-measurable functions. Here the \mathcal{A}-measurable functions f and g are equivalent if $f = g$ a.e. with respect to the measure μ.

This is a pre-publication version of this article, which may differ from the final published version. Copyright restrictions may apply.
The T-universal completion of E is the space

$$\mathcal{L}^1(T) = \left\{ f \in E^u \bigg| \int_{\Omega_n} |f| d\mu < \infty \text{ for all } n \in \mathbb{N} \right\},$$

which is characterized by $f|_{\Omega_n} \in L^1(\Omega, \mathcal{A}, \mu)$, for each $n \in \mathbb{N}$.

We note that E has weak order unit $e = 1$, the equivalence class of functions a.e. identically 1 on Ω, which again is a weak order unit for $L^1(T)$. The range of the generalized conditional expectation operator T (as extended to $L^1(T)$) is

$$R(T) = \{ f \in E^u \mid f \text{ a.e. constant on } \Omega_n, n \in \mathbb{N} \},$$

which is an f-algebra.

Finally

$$\mathcal{L}^\infty(T) = \{ f \in E^u \mid f \text{ essentially bounded on } \Omega_n \text{ for each } n \in \mathbb{N} \}.$$

The vector norms on $L^1(T)$ and $L^\infty(T)$ are

$$\|f\|_{T,1}(\omega) = T|f|(\omega) = \int_{\Omega_n} |f| d\mu(\Omega_n), \text{ for } \omega \in \Omega_n, f \in L^1(T), \quad (2.2)$$

$$\|f\|_{T,\infty}(\omega) = \text{ ess sup}_{\Omega_n} |f|, \text{ for } \omega \in \Omega_n, f \in L^\infty(T). \quad (2.3)$$

The following lemma will assist in the proof of strong sequential completeness.

Lemma 2.1 Let (h_n) be a sequence in $L^1(T)$ with $s := \sum_{n=1}^{\infty} T|h_n|$ order convergent in the universal completion of $L^1(T)$, then the summation $\sum_{n=1}^{\infty} h_n$ is order convergent in $L^1(T)$.

Proof: Let $s_n^\pm = \sum_{i=1}^{n} h_i^\pm$, then the partial sums s_n of $\sum_{n=1}^{\infty} h_n$ are given by $s_n = s_n^+ - s_n^-$. Here (s_n^\pm) are increasing sequences with

$$Ts_n^\pm = \sum_{i=1}^{n} Th_i^\pm \leq \sum_{i=1}^{n} T|h_i| \leq s.$$

The T-universal completeness of $L^1(T)$ now allows us to conclude that (s_n^\pm) are convergent in $L^1(T)$ to limits, say h^\pm. Setting $h = h^+ - h^-$ we have that

$$s_n = s_n^+ - s_n^- \to h^+ - h^- = h \in L^1(T)$$

in order as $n \to \infty$. \hfill \blacksquare
Definition 2.2 We say that a net \((f_\alpha)\) in \(L^p(T)\), \(p = 1, \infty\), is a strong Cauchy net if
\[
v_\alpha := \sup_{\beta, \gamma \geq \alpha} \|f_\beta - f_\gamma\|_{T,p}
\]
is eventually defined and has order limit zero.

3 Strong sequential completeness of \(L^1(T)\)

We now show that \(L^1(T)\) is strongly sequentially complete - i.e. that for every sequence \((f_n)\) in \(L^1(T)\) with \(\sup_{i,j \geq n} T|f_i - f_j| \downarrow 0\) there is \(f \in L^1(T)\) so that \(T|f_n - f| \to 0\) in order as \(n \to \infty\).

Theorem 3.1 \(L^1(T)\) is strongly sequentially complete.

Proof: Let \((f_n)\) be a strong \(T\)-Cauchy sequence in \(L^1(T)\). From the definition of a strong Cauchy sequence, we can define
\[
v_n := \sup_{r,s \geq n} T|f_r - f_s|
\]
where the sequence \((v_n) \subset R(T)\) decreases with infimum zero. As \(e, v_n \in R(T)\), it follows that \((\frac{1}{2^j}e - v_n)^+ \in R(T)\) and hence the band projections \(P_{j,n} := P_{\frac{1}{2^j}e - v_n}^+, j, n \in \mathbb{N}\), commute with \(T\), see [7]. For \(n = 0\) define \(P_{j,0} = 0\). We observe that \(P_{j,n}\) is increasing in \(n\) and decreasing in \(j\). In particular, \(\lim_{n \to \infty} P_{j,n} = I\), since \(v_n \downarrow 0\). Hence
\[
\sum_{n=0}^{\infty} (P_{j,n+1} - P_{j,n}) = I \text{ for each } j \in \mathbb{N}.
\]

We now construct a sequence \((g_j) \in L^1(T)\) that is both asymptotically close to \((f_n)\) and is strongly convergent in \(L^1(T)\). As band projections commute with Riesz space absolute value, we have
\[
T|(P_j,n - P_{j,n-1})f_{\max\{j,n\}}| = (P_j,n - P_{j,n-1})T|f_{\max\{j,n\}}|, \quad n, j \in \mathbb{N}.
\]
Here, for \(m \neq n\), \((P_j,n - P_{j,n-1}) \land (P_{j,m} - P_{j,m-1}) = 0\) so
\[
\sum_{n=1}^{\infty} T|(P_j,n - P_{j,n-1})f_{\max\{j,n\}}| = \sum_{n=1}^{\infty} (P_j,n - P_{j,n-1})T|f_{\max\{j,n\}}| = \sup_{n \in \mathbb{N}} (P_j,n - P_{j,n-1})T|f_{\max\{j,n\}}| =: K \in E^u
\]

This is a pre-publication version of this article, which may differ from the final published version. Copyright restrictions may apply.
exists in the universal completion E^u. Lemma 2.1 can now be applied to give that the summation
\[g_j = \sum_{n=1}^{\infty} (P_{j,n} - P_{j,n-1})f_{\max(j,n)}, \quad j \in \mathbb{N}, \]
converges in order in $L^1(T)$.

We now show that the sequence (g_j) converges in $L^1(T)$. Consider $T|g_j - g_{j+1}|$. Because $\sum_{n=0}^{\infty} (P_{j,n+1} - P_{j,n}) = I$ for each $j \in \mathbb{N}$, we have that
\[
T|g_j - g_{j+1}| = T \left| \sum_{n=1}^{\infty} (P_{j,n} - P_{j,n-1})f_{\max(j,n)} - \sum_{m=1}^{\infty} (P_{j+1,m} - P_{j+1,m-1})f_{\max(j+1,m)} \right| \\
= T \left| \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} (P_{j+1,m} - P_{j+1,m-1})(P_{j,n} - P_{j,n-1})(f_{\max(j,n)} - f_{\max(j+1,m)}) \right| \\
= \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} (P_{j+1,m} - P_{j+1,m-1})(P_{j,n} - P_{j,n-1})T|f_{\max(j,n)} - f_{\max(j+1,m)}|.
\]
Here we have used that
\[
(P_{j+1,m} - P_{j+1,m-1})(P_{j,n} - P_{j,n-1}) \wedge (P_{j+1,x} - P_{j+1,x-1})(P_{j,y} - P_{j,y-1}) = 0
\]
for $(m, n) \neq (x, y)$.

For $m \geq n$ we have
\[
(P_{j,n} - P_{j,n-1})T|f_{\max(j,n)} - f_{\max(j+1,m)}| \leq (P_{j,n} - P_{j,n-1})v_n \\
\leq \frac{1}{2^j}(P_{j,n} - P_{j,n-1})e
\]
while for $m < n$ we have
\[
(P_{j+1,m} - P_{j+1,m-1})T|f_{\max(j,n)} - f_{\max(j+1,m)}| \leq (P_{j+1,m} - P_{j+1,m-1})v_m \\
\leq \frac{1}{2^{j+1}}(P_{j+1,m} - P_{j+1,m-1})e.
\]
Thus
\[
T|g_j - g_{j+1}| \leq \frac{1}{2^j} \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} (P_{j+1,m} - P_{j+1,m-1})(P_{j,n} - P_{j,n-1})e = \frac{1}{2^j} e
\]
and the summation $\sum_{j=1}^{\infty} T|g_j - g_{j+1}|$ is e-uniformly (and hence order) convergent. Application of Lemma 2.1 gives that the summation $\sum_{j=1}^{\infty} (g_j - g_{j+1})$ is order convergent.
which is equivalent to the order limit \(\lim_{j \to \infty} (g_1 - g_{j+1}) \) existing. We can thus define \(g \) to be the order limit of the sequence \((g_j)\) in \(L^1(T) \). Order continuity of \(T \) now gives that \(\lim_{n \to \infty} T|g_n - g| = 0 \) and that \((g_n)\) converges strongly to \(g \) in \(L^1(T) \).

From the order continuity of \(T \) and the order convergence of \((g_n)\) to \(g \) we have that \(T|g_n - g| \to 0 \) in order. Hence to show that \(g \) is the strong limit of the \((f_n)\) it suffices to prove that \(T|g_n - f_n| \to 0 \) in order. As \(\sum_{n=0}^{\infty} (P_{j,n+1} - P_{j,n}) = I \) we have

\[
g_j - f_j = \sum_{n=1}^{\infty} (P_{j,n} - P_{j,n-1}) (f_{\max_{j,n}} - f_j) = \sum_{n=1}^{j} (P_{j,n} - P_{j,n-1}) (f_j - f_j) + \sum_{n=j+1}^{\infty} (P_{j,n} - P_{j,n-1}) (f_n - f_j)
\]

The order continuity of \(T \) gives

\[
T|g_j - f_j| \leq \sum_{n=j+1}^{\infty} (P_{j,n} - P_{j,n-1}) T|f_n - f_j| \leq \sum_{n=j+1}^{\infty} (P_{j,n} - P_{j,n-1}) v_j \leq v_j
\]

and \(v_j \downarrow 0 \) as \(j \to \infty \). Thus \(T|f_j - g| \to 0 \) in order as \(n \to \infty \).

These results extended to the convergence of strong Cauchy nets which contain a sequence as a subnet. More can be said in the case of \(p = \infty \), as see in the following section.

4 Strong completeness of \(\mathcal{L}^\infty(T) \)

For the case of \(\mathcal{L}^\infty(T) \) we can prove a stronger result, i.e. that \(\mathcal{L}^\infty(T) \) is strongly complete. The proof, unfortunately, cannot be extended to \(\mathcal{L}^p(T) \) for \(p \in [1, \infty) \).

Theorem 4.1 Each strong Cauchy net in \(\mathcal{L}^\infty(T) \) is strongly convergent in \(\mathcal{L}^\infty(T) \).
Proof: Let (f_α) be a strong Cauchy net in $L^\infty(T)$, then eventually

$$v_\alpha := \sup_{\beta, \gamma \geq \alpha} \|f_\beta - f_\gamma\|_{T, \infty} = \inf\{g \in R(T) : |f_\beta - f_\gamma| \leq g \text{ for all } \beta, \gamma \geq \alpha\}$$

exists as an element of $R(T)$ and $v_\alpha \downarrow 0$. Hence eventually $|f_\beta - f_\gamma| \leq v_\alpha$, for $\beta, \gamma \geq \alpha$, and the Cauchy net (f_α) is eventually bounded. We can thus define $\underline{f} := \liminf_\alpha f_\alpha$, $\overline{f} := \limsup_\alpha f_\alpha$ in $L^\infty(T)$. Now

$$0 \leq \overline{f} - \underline{f} = \lim_\alpha (\sup_{\beta \geq \alpha} f_\beta - \inf_{\gamma \geq \alpha} f_\gamma) = \lim_\alpha \sup_{\beta, \gamma \geq \alpha} (f_\beta - f_\gamma) \leq \lim_\alpha v_\alpha = 0.$$

So $\overline{f} = f$ and we can set $f := \overline{f} = f$ with (f_α) converging in order f, see [2]. However $|f_\beta - f_\gamma| \leq v_\alpha$ for all $\beta, \gamma \geq \alpha$, so taking the order limit in the index γ we have $|f_\alpha - f| \leq v_\alpha$ and hence $\|f_\alpha - f\|_{T, \infty} \leq v_\alpha \downarrow 0.$ \(\blacksquare\)

References

