Odd primary homotopy types of the gauge groups of exceptional Lie groups
HTML articles powered by AMS MathViewer
- by Sho Hasui, Daisuke Kishimoto, Tseleung So and Stephen Theriault
- Proc. Amer. Math. Soc. 147 (2019), 1751-1762
- DOI: https://doi.org/10.1090/proc/14333
- Published electronically: January 8, 2019
- PDF | Request permission
Abstract:
The $p$-local homotopy types of gauge groups of principal $G$-bundles over $S^4$ are classified when $G$ is a compact connected exceptional Lie group without $p$-torsion in homology except for $(G,p)=(\mathrm {E}_7,5)$.References
- M. F. Atiyah and R. Bott, The Yang-Mills equations over Riemann surfaces, Philos. Trans. Roy. Soc. London Ser. A 308 (1983), no.Β 1505, 523β615. MR 702806, DOI 10.1098/rsta.1983.0017
- Fred Cohen, Splitting certain suspensions via self-maps, Illinois J. Math. 20 (1976), no.Β 2, 336β347. MR 405412
- Tyrone Cutler, The homotopy types of $Sp(3)$-gauge groups, Topology Appl. 236 (2018), 44β58. MR 3758570, DOI 10.1016/j.topol.2018.01.005
- Daniel Henry Gottlieb, Applications of bundle map theory, Trans. Amer. Math. Soc. 171 (1972), 23β50. MR 309111, DOI 10.1090/S0002-9947-1972-0309111-X
- Hiroaki Hamanaka and Akira Kono, Unstable $K^1$-group and homotopy type of certain gauge groups, Proc. Roy. Soc. Edinburgh Sect. A 136 (2006), no.Β 1, 149β155. MR 2217512, DOI 10.1017/S0308210500004480
- Sho Hasui, Daisuke Kishimoto, and Akihiro Ohsita, Samelson products in $p$-regular exceptional Lie groups, Topology Appl. 178 (2014), 17β29. MR 3276725, DOI 10.1016/j.topol.2014.08.008
- Sho Hasui, Daisuke Kishimoto, Toshiyuki Miyauchi, and Akihiro Ohsita, Samelson products in quasi-$p$-regular exceptional Lie groups, Homology Homotopy Appl. 20 (2018), no.Β 1, 185β208. MR 3775355, DOI 10.4310/HHA.2018.v20.n1.a11
- Sho Hasui, Daisuke Kishimoto, Akira Kono, and Takashi Sato, The homotopy types of $\textrm {PU}(3)$- and $\textrm {PSp}(2)$-gauge groups, Algebr. Geom. Topol. 16 (2016), no.Β 3, 1813β1825. MR 3523056, DOI 10.2140/agt.2016.16.1813
- Yasuhiko Kamiyama, Daisuke Kishimoto, Akira Kono, and Shuichi Tsukuda, Samelson products of $\rm SO(3)$ and applications, Glasg. Math. J. 49 (2007), no.Β 2, 405β409. MR 2347270, DOI 10.1017/S0017089507003606
- Daisuke Kishimoto, Homotopy nilpotency in localized $\textrm {SU}(n)$, Homology Homotopy Appl. 11 (2009), no.Β 1, 61β79. MR 2506127
- D. Kishimoto and A. Kono, On the homotopy types of $\mathrm {Sp}(n)$ gauge groups, preprint.
- Daisuke Kishimoto, Akira Kono, and Mitsunobu Tsutaya, On $p$-local homotopy types of gauge groups, Proc. Roy. Soc. Edinburgh Sect. A 144 (2014), no.Β 1, 149β160. MR 3164541, DOI 10.1017/S0308210512001278
- Daisuke Kishimoto, Stephen Theriault, and Mitsunobu Tsutaya, The homotopy types of $G_2$-gauge groups, Topology Appl. 228 (2017), 92β107. MR 3679077, DOI 10.1016/j.topol.2017.05.012
- Akira Kono, A note on the homotopy type of certain gauge groups, Proc. Roy. Soc. Edinburgh Sect. A 117 (1991), no.Β 3-4, 295β297. MR 1103296, DOI 10.1017/S0308210500024732
- George E. Lang Jr., The evaluation map and EHP sequences, Pacific J. Math. 44 (1973), 201β210. MR 341484
- Mamoru Mimura, Goro Nishida, and Hirosi Toda, $\textrm {Mod}\ p$ decomposition of compact Lie groups, Publ. Res. Inst. Math. Sci. 13 (1977/78), no.Β 3, 627β680. MR 478187, DOI 10.2977/prims/1195189602
- Mamoru Mimura and Hirosi Toda, Cohomology operations and homotopy of compact Lie groups. I, Topology 9 (1970), 317β336. MR 266237, DOI 10.1016/0040-9383(70)90056-X
- P. Brian Shay, $\textrm {mod}$ $p$ Wu formulas for the Steenrod algebra and the Dyer-Lashof algebra, Proc. Amer. Math. Soc. 63 (1977), no.Β 2, 339β347. MR 454974, DOI 10.1090/S0002-9939-1977-0454974-0
- Stephen D. Theriault, The odd primary $H$-structure of low rank Lie groups and its application to exponents, Trans. Amer. Math. Soc. 359 (2007), no.Β 9, 4511β4535. MR 2309196, DOI 10.1090/S0002-9947-07-04304-8
- Stephen D. Theriault, The homotopy types of $\rm Sp(2)$-gauge groups, Kyoto J. Math. 50 (2010), no.Β 3, 591β605. MR 2723863, DOI 10.1215/0023608X-2010-005
- Stephen Theriault, The homotopy types of $SU(5)$-gauge groups, Osaka J. Math. 52 (2015), no.Β 1, 15β29. MR 3326599
- Stephen Theriault, Odd primary homotopy types of $\textrm {SU}(n)$-gauge groups, Algebr. Geom. Topol. 17 (2017), no.Β 2, 1131β1150. MR 3623684, DOI 10.2140/agt.2017.17.1131
- Hirosi Toda, Composition methods in homotopy groups of spheres, Annals of Mathematics Studies, No. 49, Princeton University Press, Princeton, NJ, 1962. MR 143217
Bibliographic Information
- Sho Hasui
- Affiliation: Institute of Mathematics, University of Tsukuba, Ibaraki 305-8571, Japan
- MR Author ID: 1085016
- Email: s.hasui@math.tsukuba.ac.jp
- Daisuke Kishimoto
- Affiliation: Department of Mathematics, Kyoto University, Kyoto, 606-8502, Japan
- MR Author ID: 681652
- ORCID: 0000-0002-7837-8818
- Email: kishi@math.kyoto-u.ac.jp
- Tseleung So
- Affiliation: Mathematical Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
- MR Author ID: 1266815
- Email: tls1g14@soton.ac.uk
- Stephen Theriault
- Affiliation: Mathematical Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
- MR Author ID: 652604
- Email: s.d.theriault@soton.ac.uk
- Received by editor(s): March 27, 2018
- Received by editor(s) in revised form: June 12, 2018
- Published electronically: January 8, 2019
- Additional Notes: The second authorβs work was supported by JSPS KAKENHI Grant Number 17K05248.
- Communicated by: Mark Behrens
- © Copyright 2019 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 147 (2019), 1751-1762
- MSC (2010): Primary 55P15; Secondary 54C35
- DOI: https://doi.org/10.1090/proc/14333
- MathSciNet review: 3910439