Serrin-type theorems for triangles
HTML articles powered by AMS MathViewer
- by Ilaria Fragalà and Bozhidar Velichkov
- Proc. Amer. Math. Soc. 147 (2019), 1615-1626
- DOI: https://doi.org/10.1090/proc/14352
- Published electronically: January 8, 2019
- PDF | Request permission
Abstract:
We investigate interior and exterior overdetermined boundary value problems on triangles, which corresponds to studying stationary triangles for variational functionals under volume or perimeter constraint. We prove that in certain cases the only triangle supporting solution is the equilateral one. In some other cases, we obtain that all triangles support solutions, thus extending (through a simpler proof) what was recently shown by Hans Christianson [Proc. Amer. Math. Soc. 145 (2017), no. 12, 5247–5255].References
- Chiara Bianchini, Giulio Ciraolo, and Paolo Salani, An overdetermined problem for the anisotropic capacity, Calc. Var. Partial Differential Equations 55 (2016), no. 4, Art. 84, 24. MR 3519594, DOI 10.1007/s00526-016-1011-x
- Guy Bouchitté, Ilaria Fragalà, and Ilaria Lucardesi, Shape derivatives for minima of integral functionals, Math. Program. 148 (2014), no. 1-2, Ser. B, 111–142. MR 3274847, DOI 10.1007/s10107-013-0712-6
- Guy Bouchitté, Ilaria Fragalà, and Ilaria Lucardesi, A variational method for second order shape derivatives, SIAM J. Control Optim. 54 (2016), no. 2, 1056–1084. MR 3489049, DOI 10.1137/15100494X
- B. Brandolini, C. Nitsch, P. Salani, and C. Trombetti, Serrin-type overdetermined problems: an alternative proof, Arch. Ration. Mech. Anal. 190 (2008), no. 2, 267–280. MR 2448319, DOI 10.1007/s00205-008-0119-3
- F. Brock and A. Henrot, A symmetry result for an overdetermined elliptic problem using continuous rearrangement and domain derivative, Rend. Circ. Mat. Palermo (2) 51 (2002), no. 3, 375–390. MR 1947461, DOI 10.1007/BF02871848
- F. Brock and J. Prajapat, Some new symmetry results for elliptic problems on the sphere and in Euclidean space, Rend. Circ. Mat. Palermo (2) 49 (2000), no. 3, 445–462. MR 1809087, DOI 10.1007/BF02904257
- Dorin Bucur, Ilaria Fragalà, and Jimmy Lamboley, Optimal convex shapes for concave functionals, ESAIM Control Optim. Calc. Var. 18 (2012), no. 3, 693–711. MR 3041661, DOI 10.1051/cocv/2011167
- Hans Christianson, Equidistribution of Neumann data mass on triangles, Proc. Amer. Math. Soc. 145 (2017), no. 12, 5247–5255. MR 3717953, DOI 10.1090/proc/13742
- A. Colesanti, K. Nyström, P. Salani, J. Xiao, D. Yang, and G. Zhang, The Hadamard variational formula and the Minkowski problem for $p$-capacity, Adv. Math. 285 (2015), 1511–1588. MR 3406534, DOI 10.1016/j.aim.2015.06.022
- Graziano Crasta and Ilaria Fragalà, On the Dirichlet and Serrin problems for the inhomogeneous infinity Laplacian in convex domains: regularity and geometric results, Arch. Ration. Mech. Anal. 218 (2015), no. 3, 1577–1607. MR 3401015, DOI 10.1007/s00205-015-0888-4
- Björn E. J. Dahlberg, Estimates of harmonic measure, Arch. Rational Mech. Anal. 65 (1977), no. 3, 275–288. MR 466593, DOI 10.1007/BF00280445
- Ilaria Fragalà, Symmetry results for overdetermined problems on convex domains via Brunn-Minkowski inequalities, J. Math. Pures Appl. (9) 97 (2012), no. 1, 55–65 (English, with English and French summaries). MR 2863764, DOI 10.1016/j.matpur.2011.09.001
- Ilaria Fragalà and Filippo Gazzola, Partially overdetermined elliptic boundary value problems, J. Differential Equations 245 (2008), no. 5, 1299–1322. MR 2436831, DOI 10.1016/j.jde.2008.06.014
- Ilaria Fragalà, Filippo Gazzola, and Bernd Kawohl, Overdetermined problems with possibly degenerate ellipticity, a geometric approach, Math. Z. 254 (2006), no. 1, 117–132. MR 2232009, DOI 10.1007/s00209-006-0937-7
- Ilaria Fragalà, Filippo Gazzola, and Michel Pierre, On an isoperimetric inequality for capacity conjectured by Pólya and Szegő, J. Differential Equations 250 (2011), no. 3, 1500–1520. MR 2737215, DOI 10.1016/j.jde.2010.07.017
- Nicola Garofalo and John L. Lewis, A symmetry result related to some overdetermined boundary value problems, Amer. J. Math. 111 (1989), no. 1, 9–33. MR 980297, DOI 10.2307/2374477
- David Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second order, Classics in Mathematics, Springer-Verlag, Berlin, 2001. Reprint of the 1998 edition. MR 1814364
- Antoine Henrot, Extremum problems for eigenvalues of elliptic operators, Frontiers in Mathematics, Birkhäuser Verlag, Basel, 2006. MR 2251558
- Antoine Henrot and Michel Pierre, Variation et optimisation de formes, Mathématiques & Applications (Berlin) [Mathematics & Applications], vol. 48, Springer, Berlin, 2005 (French). Une analyse géométrique. [A geometric analysis]. MR 2512810, DOI 10.1007/3-540-37689-5
- B. Kawohl, Overdetermined problems and the $p$-Laplacian, Acta Math. Univ. Comenian. (N.S.) 76 (2007), no. 1, 77–83. MR 2331055
- John L. Lewis and Kaj Nyström, Regularity and free boundary regularity for the $p$ Laplacian in Lipschitz and $C^1$ domains, Ann. Acad. Sci. Fenn. Math. 33 (2008), no. 2, 523–548. MR 2431379
- Juan J. Manfredi, $p$-harmonic functions in the plane, Proc. Amer. Math. Soc. 103 (1988), no. 2, 473–479. MR 943069, DOI 10.1090/S0002-9939-1988-0943069-2
- Patrizia Pucci and James Serrin, The maximum principle, Progress in Nonlinear Differential Equations and their Applications, vol. 73, Birkhäuser Verlag, Basel, 2007. MR 2356201
- W. Reichel, Radial symmetry by moving planes for semilinear elliptic BVPs on annuli and other non-convex domains, Elliptic and parabolic problems (Pont-à-Mousson, 1994) Pitman Res. Notes Math. Ser., vol. 325, Longman Sci. Tech., Harlow, 1995, pp. 164–182. MR 1416582
- Wolfgang Reichel, Radial symmetry for elliptic boundary-value problems on exterior domains, Arch. Rational Mech. Anal. 137 (1997), no. 4, 381–394. MR 1463801, DOI 10.1007/s002050050034
- James Serrin, A symmetry problem in potential theory, Arch. Rational Mech. Anal. 43 (1971), 304–318. MR 333220, DOI 10.1007/BF00250468
- Henrik Shahgholian, Diversifications of Serrin’s and related symmetry problems, Complex Var. Elliptic Equ. 57 (2012), no. 6, 653–665. MR 2916825, DOI 10.1080/17476933.2010.504848
- Luis Silvestre and Boyan Sirakov, Overdetermined problems for fully nonlinear elliptic equations, Calc. Var. Partial Differential Equations 54 (2015), no. 1, 989–1007. MR 3385189, DOI 10.1007/s00526-014-0814-x
- Andrew L. Vogel, Symmetry and regularity for general regions having a solution to certain overdetermined boundary value problems, Atti Sem. Mat. Fis. Univ. Modena 40 (1992), no. 2, 443–484. MR 1200301
Bibliographic Information
- Ilaria Fragalà
- Affiliation: Dipartimento di Matematica, Politecnico di Milano, Piazza Leonardo da Vinci, 32, 20133 Milano, Italy
- MR Author ID: 629098
- Email: ilaria.fragala@polimi.it
- Bozhidar Velichkov
- Affiliation: Laboratoire Jean Kuntzmann (LJK), Université Grenoble Alpes, Bâtiment IMAG, 700 Avenue Centrale, 38401 Saint-Martin-d’Hères, France
- MR Author ID: 1000813
- Email: bozhidar.velichkov@univ-grenoble-alpes.fr
- Received by editor(s): May 14, 2018
- Received by editor(s) in revised form: August 9, 2018
- Published electronically: January 8, 2019
- Additional Notes: The authors have been supported by the Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM).
The second author has been partially supported by ANR through the projects GeoSpec (LabEx PERSYVAL-Lab, ANR-11- LABX-0025-01) and CoMeDiC (ANR-15-CE40-0006). - Communicated by: Joachim Krieger
- © Copyright 2019 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 147 (2019), 1615-1626
- MSC (2010): Primary 35N25, 35J57, 49Q10
- DOI: https://doi.org/10.1090/proc/14352
- MathSciNet review: 3910426