Dimension dependence of factorization problems: Biparameter Hardy spaces
HTML articles powered by AMS MathViewer
- by Richard Lechner
- Proc. Amer. Math. Soc. 147 (2019), 1639-1652
- DOI: https://doi.org/10.1090/proc/14364
- Published electronically: January 8, 2019
- PDF | Request permission
Abstract:
Given $1 \leq p,q < \infty$, and $n\in \mathbb {N}_0$, let $H_n^p(H_n^q)$ denote the finite-dimensional building blocks of the biparameter dyadic Hardy space $H^p(H^q)$. Let $(V_n : n\in \mathbb {N}_0)$ denote either $\bigl (H_n^p(H_n^q) : n\in \mathbb {N}_0\bigr )$ or $\bigl ( (H_n^p(H_n^q))^* : n\in \mathbb {N}_0\bigr )$. We show that the identity operator on $V_n$ factors through any operator $T : V_N\to V_N$ which has a large diagonal with respect to the Haar system, where $N$ depends linearly on $n$.References
- G. Blower, The Banach space $B(l^2)$ is primary, Bull. London Math. Soc. 22 (1990), no. 2, 176–182. MR 1045291, DOI 10.1112/blms/22.2.176
- J. Bourgain, On the primarity of $H^{\infty }$-spaces, Israel J. Math. 45 (1983), no. 4, 329–336. MR 720307, DOI 10.1007/BF02804016
- J. Bourgain and L. Tzafriri, Invertibility of “large” submatrices with applications to the geometry of Banach spaces and harmonic analysis, Israel J. Math. 57 (1987), no. 2, 137–224. MR 890420, DOI 10.1007/BF02772174
- J. L. B. Gamlen and R. J. Gaudet, On subsequences of the Haar system in $L_{p}$ $[1,\,1](1\leq p\leq \infty )$, Israel J. Math. 15 (1973), 404–413. MR 328575, DOI 10.1007/BF02757079
- Peter W. Jones, BMO and the Banach space approximation problem, Amer. J. Math. 107 (1985), no. 4, 853–893. MR 796906, DOI 10.2307/2374360
- Niels Jakob Laustsen, Richard Lechner, and Paul F. X. Müller, Factorization of the identity through operators with large diagonal, J. Funct. Anal. 275 (2018), no. 11, 3169–3207. MR 3861733, DOI 10.1016/j.jfa.2018.02.010
- R. Lechner, Direct sums of finite dimensional $SL^\infty _n$ spaces. ArXiv e-prints, Sept. 2017.
- R. Lechner, Dimension dependence of factorization problems: bi-parameter Hardy spaces. ArXiv e-prints, Feb. 2018.
- R. Lechner, Dimension dependence of factorization problems: Hardy spaces and $SL_n^\infty$. Israel J. Math, to appear.
- Richard Lechner, Factorization in mixed norm Hardy and BMO spaces, Studia Math. 242 (2018), no. 3, 231–265. MR 3794334, DOI 10.4064/sm8751-6-2017
- Richard Lechner and Paul F. X. Müller, Localization and projections on bi-parameter BMO, Q. J. Math. 66 (2015), no. 4, 1069–1101. MR 3436171, DOI 10.1093/qmath/hav028
- Joram Lindenstrauss and Lior Tzafriri, Classical Banach spaces. II, Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], vol. 97, Springer-Verlag, Berlin-New York, 1979. Function spaces. MR 540367
- Paul F. X. Müller, On projections in $H^1$ and BMO, Studia Math. 89 (1988), no. 2, 145–158. MR 955660, DOI 10.4064/sm-89-2-143-158
- Paul F. X. Müller, Isomorphisms between $H^1$ spaces, Instytut Matematyczny Polskiej Akademii Nauk. Monografie Matematyczne (New Series) [Mathematics Institute of the Polish Academy of Sciences. Mathematical Monographs (New Series)], vol. 66, Birkhäuser Verlag, Basel, 2005. MR 2157745
- Paul F. X. Müller, Two remarks on primary spaces, Math. Proc. Cambridge Philos. Soc. 153 (2012), no. 3, 505–523. MR 2990628, DOI 10.1017/S0305004112000199
- H. M. Wark, A class of primary Banach spaces, J. Math. Anal. Appl. 326 (2007), no. 2, 1427–1436. MR 2280992, DOI 10.1016/j.jmaa.2006.03.047
- H. M. Wark, The $l^\infty$ direct sum of $L^p$ $(1<p<\infty )$ is primary, J. Lond. Math. Soc. (2) 75 (2007), no. 1, 176–186. MR 2302737, DOI 10.1112/jlms/jdl010
Bibliographic Information
- Richard Lechner
- Affiliation: Institute of Analysis, Johannes Kepler University Linz, Altenberger Strasse 69, A-4040 Linz, Austria
- MR Author ID: 1058338
- Email: richard.lechner@jku.at
- Received by editor(s): February 20, 2018
- Received by editor(s) in revised form: August 14, 2018
- Published electronically: January 8, 2019
- Additional Notes: This work was supported by the Austrian Science Foundation (FWF) Pr.Nr. P28352.
- Communicated by: Stephen Dilworth
- © Copyright 2019 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 147 (2019), 1639-1652
- MSC (2010): Primary 46B07, 30H10, 46B25, 60G46
- DOI: https://doi.org/10.1090/proc/14364
- MathSciNet review: 3910428